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Abstract

The availability and reliability of power supply in Nigeria are critical issues,
undermining economic and technological development. Despite policy reforms
and capital investments, inadequate generation capacity and poor power system
planning continue to limit progress. This study introduces a comprehensive
approach to long-term power system planning in Nigeria, combining intelligent
load forecasting with generation adequacy assessment up to 2040. An Adaptive
Neuro-Fuzzy Inference System (ANFIS) model was developed to forecast future
electricity demand, projecting a load requirement of approximately 87,304.08
MW by 2040. A metaheuristic approach utilizing the Disparity Evolution
Genetic Algorithm (DEGA) was implemented to assess system adequacy.
Results revealed that the current generation capacity of 4,500MW s
significantly inadequate, necessitating an additional 101,564.5 MW, or
5,071.1IMW  annually, to maintain acceptable reliability standards.
Furthermore, using a Levelized Cost of Electricity (LCOE) model under fossil-
fuel-based generation assumptions, an annual investment of $3,887,005,815.52
was determined to support the expansion. These findings underscore the critical
need for accurate demand forecasting, robust adequacy assessment, and
strategic investment planning to ensure long-term energy security and
sustainable development in Nigeria.

1.0 INTRODUCTION

In today’s world, no nation can achieve sustainable
poverty reduction without a significant increase in
energy utilization. Higher energy consumption is
often associated with increased income levels and
improved human development indexes [1]. Modern
development trends have driven a substantial increase
in electricity consumption across multiple sectors,
including communication, agriculture, transportation,
and industry, owing to its versatility and ease of
transmission and distribution. As such, electricity has
become the backbone of economic development,
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particularly in Nigeria, where it plays a critical role in
supporting national income  generation and
developmental programs through foreign exchange
earnings [2]. Nigeria’s electricity demand has
skyrocketed due to population expansion,
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accelerating industrialization, increased agricultural
activity, and improved living standards [1]. This
growth has resulted in a significant imbalance
between its supply and national demand, where
demand exceeds the available supply [3]. In light of
this, the focus of energy policy has shifted toward
ensuring the long-term availability, reliability, and
sustainability of power supply to support economic
growth.

Reliable power system planning is essential to meet
future energy needs, requiring load forecasting and
generation adequacy assessment. Load forecasting
helps predict future energy requirements, while
adequacy assessment evaluates the system’s capacity
to meet that demand under steady-state conditions.
Reliability, in this context, encompasses not only the
generation of sufficient power but also the
infrastructure for its delivery to end users [4], [5].
While system security deals with the response to
dynamic disturbances, adequacy centers on the
availability of facilities to meet forecasted loads [6].
Long-term planning that holistically integrates these
dimensions is essential for establishing a resilient and
economically sustainable power system in Nigeria.

Different approaches to load forecasting have been
investigated in the literature. Notable among these
approaches are time series regression, Autoregressive
Moving Average (ARMA) with exogenous variables
(ARMAX), Autoregressive Integrated Moving
Average (ARIMA) with exogenous inputs
(ARIMAX), and exponential smoothing. The time
series approach assumes that load is modeled as a
function of past observed values. Similar to the
ARMA [7] and spectral expansion techniques [8], the
regression model detects and explores the correlation
between load patterns and weather variations [9].
These models have gained diverse applications. For
instance, [10] carried out load prediction of electricity
demand for a power system employing the ARIMA
modeling technique. Studies [11-14] utilized various
methods for load demand forecasting, including
ARMAX [11], ARIMA [12], ARIMAX [13], and
regression analysis [14]. While these methods offer
computational simplicity and flexibility, they
primarily rely on linear analysis, limiting their ability
to model complex nonlinear relationships inherent in
load demand influenced by exogenous variables.
Moreover, manual computation techniques used in
these methods require an exact system model,
reducing their adaptability to dynamic and evolving
power systems.
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Recently, the application of Artificial Intelligence
(AI) methods for predicting issues in power systems
has been actively investigated. Among the available
Al-based techniques, Neural Networks (NN) models
have received serious attention due to their potential
to capture complex and nonlinear relationships among
the input variables via the training processes with
existing data [15]. Through this learning ability, NNs
enable the modeling of any system, even for complex
and nonlinear functions of the exogenous variables.
However, challenges such as slow convergence have
hindered their efficiency in real-time applications. The
integration of NNs with faster processing systems has
been proposed to address these limitations, yet their
effectiveness in long-term forecasting for large-scale
power systems, such as Nigeria’s, remains
insufficiently explored. This gap necessitates the
development of an optimized Al-driven hybrid
forecasting model, such as the adaptive neuro-fuzzy
inference system, to enhance prediction accuracy and
computational efficiency for long-term power demand
forecasting in Nigeria.

Similarly, power system adequacy evaluation has
been approached through analytical and numerical
simulation techniques. The numerical simulation
approaches were mainly used in present-day studies
[16], [17] due to their computational accuracy and
flexibility. Among the numerical simulation-based
methods, intelligent-based  algorithms  have
extensively been used [18], [19]. Despite their
advantages, these methods often suffer from slow
convergence, premature optimization, and high
execution time [16], [20], limiting their efficiency in
large-scale power system studies. Given Nigeria’s
growing energy demand and the need for a robust
expansion strategy, an advanced adequacy assessment
technique that overcomes these challenges is essential.
Thus, this study fills a critical gap by developing a
power demand forecasting model using ANFIS and
evaluating Nigeria’s generation adequacy using the
disparity evolution genetic algorithm. It aims to
provide a comprehensive and computationally
efficient framework for long-term power planning,
ensuring optimal generation expansion to meet
Nigeria’s electricity demand by 2040. This target year
is selected due to projections indicating a 30%
increase in global energy consumption by that time
[21], driven by population growth, industrialization,
and rising living standards.

This paper contributes to the body knowledge in the
following ways:
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o It determined power demand in Nigeria up to 2040
using an intelligent forecast algorithm based on an
adaptive neuro-fuzzy inference system.

e [t assessed the adequacy of the country’s existing
power generation capacity employing a novel
disparity evolution genetic algorithm.

e A strategic generation expansion plan is developed
to ensure sufficient capacity to meet the power
demand for the stated period.

o It determined the level of investment required for
the projected power demand.

2.0 METHODOLOGY

The methodology used for the power demand
projection model and the generation system adequacy
evaluation is based on ANFIS architecture and DEGA
respectively. The study first projected the load
demand up to 2040 and subsequently carried out an
adequacy assessment of the generating system.
Following this, a generation expansion plan was
developed to satisfy the projected load demand and
maintain acceptable reliability standards. LCOE was
subsequently determined to evaluate the economic
viability of the expansion plan.

2.1 Data Collection

The following data were utilized in this research paper
for load projection: yearly electricity consumption,
population (Pep}, gross domestic product, stock
index, average ambient temperature, percentage
relative humidity, and average precipitation. In
addition, historical yearly data on generating plant
unit capacity, hours of operation, forced outages, and
peak electric power demand were employed for the
adequacy assessment of the generating system.
Furthermore, input parameters needed for the
investment costing including annualized capital cost,
operation and maintenance costs, fuel cost per unit,
quantity of fuel per unit electricity, heat rate, capacity
factor, discount rate, and lifetime of the generating
plant were also used.

These data were obtained directly from the Central
Bank of Nigeria Statistical Bulletin, National Bureau
of Statistics (NBS), World Climate and Food Safety
Chart International Energy Agency (IEA), and
Nigerian Electricity Regulatory Commission (NERC).
The collected data covered twenty years (1999 —
2018).

2.2  Design of the Network Model for the Power
Demand Projection

The important socio-economic and environmental
parameters that greatly influence long-term electricity
consumption were selected as inputs to the network.
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These parameters include: the Yearly Electricity
Consumption (EleC;), Gross Domestic Product
(GDP), Population (Pop), Stock Index (S7), average
ambient Temperature (7a.¢), percentage Relative
Humidity (Hum), and Precipitation (Prep). The choice
of these parameters was informed by the data available
at the time of this research. Using these variables, a
five-layer, feedforward neuro-fuzzy architecture
shown in Figure 1 was designed for the load
projection. The input variables were fuzzified using
the fuzzy set consisting of two linguistic terms:
{LOW, HIGH}, and the model then dynamically
generated the associated fuzzy inference rules. The
associated fuzzy inference rules were dynamically
generated by the model. The final yearly electricity
load demand for the given period was obtained at the
output end of the network.
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Figure 1: ANFIS architecture for the load

projection

2.3 The Power Demand Processing Flow

The Levenberg-Marquardt algorithm was used for the
network training. The inter-unit connections (i.e., the
weighted links) across the different layers were
iteratively optimized to minimize prediction error.
This process continued until the forecast horizon was
reached or no significant difference between
successive iterations was observed. These weight
adjustments helped the ANFIS model to effectively
learn the complex relationship between the input and
output variables. After training, the network was fed
with new input vector samples, and the output was
compared with the corresponding target values
Validation was carried out to ensure that the network
could accurately generalize the output vector for any
given input vector. Following training and validation,
the network was employed to predict electricity load
demand. The power demand processing flow of the
network model is illustrated in Figure 2. A detailed
description of the ANFIS processing flow is provided
in [22].
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2.4 Adequacy Assessment for Power Generation
System

Adequacy evaluation of the generating system was
carried out to investigate the aptitude of the system to
satisfy the projected load request. The reliability index
used for this purpose was Loss of Load Probability
(LOLP). This index quantifies the probability that the
system’s load demand will exceed the available
generation capacity at any given time. The evaluation
process was implemented using DEGA, with the flow
chart illustrated in Figure 3. At the beginning, the set
of chromosomes referred to as the generation was
initialized by choosing random binary numbers for
their bits. A fitness evaluation test was carried out to
determine the ability of the chromosomes to carry the
forecasted load. A new generation with a higher
fitness value was selected from the old generation.
Through crossover and mutation operations, a final
new generation was selected and stored in the state
array. Only states whose permutations were not
previously added were stored in the state array. The
process was repeated using different generations until
no significant improvement in fitness values was
observed between successive generations or the total
generation capacity was reached. A detailed step-by-
step implementation of DEGA can be found in [23].
Once the final generation was determined, the LOLP
index was calculated using the developed state arrays
and the discrete convolution of hourly load values
over one year.

Taput the forcast horizon,
forecastiorin

Previous Load Demand,

J;::i.ti[fr::ﬂ,- / Output the projeced load /
demand. L0adpergrd
/ Load the input varibles. / [ — ]
= Loadpoms
[ Set the input membership function. J [ — }
{ Tni the nefwork using a ] <Z| W 6
backpropagton dgoitm. Efrecatin

(1

Figure 2: Power demand processing flow of the
ANFIS model
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Figure 3:  Flowchart for the adequacy evaluation
Representing the load value at hour “7” with “LH;”, the
corresponding LOLP is calculated using Equation (1).

LOLP(LH;) = X352, S; . P;. Copy; (1)
where "sa" represents the total number of state arrays,
while §; denotes the status of the system in state j,
assigned a value of 0 if generation meets or exceeds
load (success state), and 1 if it does not (failure state).
P; is the probability of the system being in state j, and
Copy;j is the copy factor indicating the frequency of
that state in the population.

It is important to note that, for the purpose of this
study, it was assumed that the transmission network is
adequately reinforced and capable of delivering the
generated power reliably to all demand centers. This
assumption allowed the analysis to focus exclusively
on generation adequacy, with the understanding that
transmission  planning involves a  separate
consideration.

2.5 Investment Costing Model

The average per unit cost of electricity produced by
any power plant is known as the levelized cost of
electricity. It is a key indicator that was utilized in the
evaluation of the costs with respect to the quantity of
power generated during the fiscal life span of a plant
and spinning through the whole energy generation
process. In addition, early construction capital, as
well as operations and maintenance costs were also
involved. The LCOE was calculated using Equation
(2).

_ P+0&My
LCOE = 2=k + (F. * Q) + 0&M, )
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where LCOE was the levelized cost of electricity, P
depicted the early investment cost in putting up the
generation plant station, O & My were the static
operation and maintenance cost, 8760 was the total
hours in a year, Cr was the percentage capacity factor,
or the ratio of the real energy output of the plant to the
energy output if it were always running at full
capacity, F. was the fuel cost, Q depicted the plant heat
rate and O & M,, gave the variable cost of operations
and maintenance.

This model was implemented using data on
investment cost, operation and maintenance costs, fuel
cost, heat rate, capacity factor, and economic life of
the generating plant, with the aid of MATLAB
Toolbox.

The LCOE is determined solely based on economic
cost components. It excludes all financial transfers
such as subsidies, taxes, grants, and concessional
loans from governments or development partners.
Additionally, it does not account for environmental
externalities associated with fossil fuel technologies,
nor does it consider interest accrued during the
construction period or the source and cost of financing
(example, debt or equity).

3.0 RESULTS AND DISCUSSION

The performance of the ANFIS model after training
was compared with that of the Auto-Regressive
Integrated Moving Average (ARIMA) model on the
same dataset. Figure 4 shows the validation results of
the two models. The load demands (both actual and
modeled values) were plotted against years from
2009-2018. Observations from Figure 4 show that the
ANFIS model closely follows the variations in the
actual load demand, unlike the ARIMA model for the
give% period.
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Figure 4: Validation results of ANFIS and
ARIMA models

To determine how far the models were able to
accurately forecast the load; error measures of the

HSE)
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accuracy were employed. The models were evaluated
using the Root Mean Squared Error (RMSE). The
validation results showed that the ANFIS and the
ARIMA models respectively have RMSE values of
193.84 and 816.76. The values were high; however,
this is attributed to the small sample data size used for
the study. A comparison of the two values showed that
the proposed model has lesser accuracy error.

While RMSE dwells more on the forecast error, such
information as the degree of the actual relationship of
the modeled values with the actual value was not
provided by this analysis tool. Therefore, the
regression coefficient of the models was examined.
The regression coefficients for the two models
(ANFIS and ARIMA) were 0.9984 and 0.9718
respectively. Although both values are relatively high,
suggesting good correlations, the ANFIS model
demonstrated a slightly stronger relationship between
the predicted and actual values. While the difference
may appear marginal, it is reasonable to anticipate that
with a larger dataset, the disparity in performance
could become more pronounced. Given these
observations, the ANFIS model was considered to
offer better predictive accuracy and was therefore
selected for load forecasting. Figure 5 shows the
projected load demand in Nigeria up to 2040 using the
ANFIS model.

il
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Figure 5:  Projected energy demand in Nigeria up

to 2040

3.1 Evaluation of the Base System LOLP

The LOLP simulation was based on the current
available Nigerian generation capacity of 4,500MW
[24]. The input parameters were loaded as matrices
into the program. The program iteratively increments
the generation, while computing the LOLP until the
total generation capacity is reached. Figure 6 shows
the variation of the LOLP with the generation capacity
as seen in the output of the DEGA program. The
LOLP was seen to reduce with the increased
generation, meaning that an increase in the generation

Vol. 44, No. 3, September 2025


https://doi.org/10.4314/njt.v44i3.1
http://creativecommons.org/licenses/by-nc-nd/4.0/

POWER DEMAND FORECASTING AND GENERATION ADEQUACY IN NIGERIA ... | 438

capacity increased the system’s reliability. An average
reliability threshold of 5% was adopted in this study
for the adequacy assessment. The 5%, taken from
expert analysis was considered the upper boundary for
LOLP value when consideration is only technically
based. Therefore, looking at Figure 6, it is observed
that the LOLP reduced from 100% to 18% at the point
where the generation capacity equals the available
capacity. This is more than the 5% benchmark, thus,
reducing the value further from 18% to 5% requires an
additional generation capacity. In other words, this
showed that the available generation capacity cannot
match the present load demand.

Qo A500MWHavailable oad), 16WL0LP)|

LOLP(2%)

! ! ! . | | | !
100 R N N~ ~ I
Power generation(MW)
Figure 6: Variation of the LOLP with generation
capacity

3.2 Analysis of the Impacts of the Load Forecast
on the Base System Reliability

Using the 2040 projected load (87, 304.008MW) in
Figure 4, the program iteratively increments the
generation per annum until the forecasted load is
reached. Figure 7 shows the effect of the forecasted
load on the LOLP of the base power generation
system. The result showed that the LOLP increased
with the load series. It could be observed that with the
projected load, LOLP increased from 18% to 97.73%,
thus, indicating an inadequate system. To cushion the
effects of this increase on the base system LOLP,
additional generation capacity would be needed.

ool
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Figure 7:  Effect of the forecasted load on the base
system LOLP

3.3 Analysis of the Generation Expansion Plan
The study performed simulation using MATLAB
Software to determine the additional generation
capacity that would reduce the LOLP from 97.73% to
5% up to 2040. However, the yearly increment in the
generation should be such that will keep the LOLP
below 5% over the forecast horizon. Figure 8 shows
the reduction in the LOLP with additional generation
capacity. At point (101564.5MW, 5%), a plan that will
provide an additional 101564.5MW by 2040 with
2020 as the base year is required. From the result, the
reduction in LOLP from 97.73% to 5% due to the
impact of the forecasted load is about 92.73%. With
2020 as the base year, the forecast horizon spans 20
years. 2020 was chosen as the base year due to its
strategic significance in Nigeria’s Vision 2020, which
aimed to position the country among the world’s top
20 economies through sustained economic growth of
11%-13%. As a key milestone year, it provides a
meaningful reference point for assessing energy
infrastructure needs and projecting future electricity
demand toward 2040.

To guide the expansion strategy, a simplified
approach was employed in which the 92.73% LOLP
reduction was distributed evenly across the 20-year
forecast horizon. This translates to an annual LOLP
reduction of 4.63%, meaning that each year, an
additional generation capacity sufficient to reduce
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LOLP by 4.63% is required. The equivalent annual
generation capacity needed to achieve this is
determined to be 5,071.11 MW. For simplicity, this
study distributes the 92.73% Loss of Load Probability
(LOLP) evenly over the 20 years; however, a more
sophisticated approach that takes into account
uncertainties and variability in demand could be
explored in future research.

100
fr
0
-
0
-
e
0 | . x\
0 ! ‘ ; [ 0 0
Additional generation capacity(MW)
Figure 8: Reduction in LOLP with additional

generation capacity

3.4 Determination of the Required Annual
Investment

Based on the forecasted load, a generation capacity of
5071.11MW per annum is required to provide a LOLP
of 4.63% to maintain the adequacy of the power
generation. Assuming that the levelized life cycle cost
of a fossil fuel power generator is about $125 per
megawatt-hour (MWh) and a capacity factor of 70%,
the cost per year of the expansion plan using Equation
(2) is $3,887,005,815.52. The choice of Equation (2)
was guided by its relevance to the economic context
of the study and the availability of required data. It
effectively captures key cost components, capital,
operational, and fuel costs, normalized over energy
output. Although alternative LCOE approaches exist,
no direct comparison was made in this work, as the
chosen model provides sufficient clarity and
applicability for long-term electricity planning given
the defined assumptions.
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This investment cost did not take optimization in
terms of types of generation technology, fuel type,
generator unit size, and other factors into
consideration.

4.0 CONCLUSION

This study successfully developed and implemented
an intelligent forecasting framework for Nigeria's
power system demand up to 2040, utilizing an
adaptive neuro-fuzzy inference system. The model
projected a load demand of approximately 87,304.08
MW by 2040. To evaluate generation adequacy, the
disparity evolution genetic algorithm was employed.
Findings revealed that the existing generation capacity
is insufficient, necessitating an additional 101,564.5
MW to meet the forecasted demand.

The study further performed an economic evaluation
to determine the investment requirement for this
generation expansion. Utilizing a levelized cost of
electricity (LCOE) model based on fossil-fuel
generation assumptions, an annual investment of
approximately $3,887,005,815.52 was calculated to
meet the future demand.

Despite the comprehensive integration of load
forecasting, adequacy assessment, and cost analysis,
this study leaves room for further investigation. Future
work could enhance the expansion modeling by
incorporating renewable and hybrid generation
technologies, as well as adopting more advanced
methodologies that account for demand uncertainties
and system variability. Additionally, alternative
LCOE calculation methods could be explored for
comparative analysis, alongside an evaluation of the
impacts of financing mechanisms and policy
incentives on generation planning and investment
decisions.
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