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Abstract

Electromagnetic and electromechanical significances of stator teeth thickness
on electric machine outputs are presented in this study. The studied machine is
a dual-stator (DS) flux-switching permanent magnet (FSPM) machine. Maxwell-
2D finite element analysis is implemented. The investigated machine metrics
include: flux linkage, induced-voltage, power, inductance, torque and magnetic
force. The compared machine types having equal and unequal stator teeth
thickness have its merits and demerits. Generated largest voltage and torque of
the equal stator-toothed machine type at rated conditions is 4.75 V and 2.48 Nm,
respectively. The developed machine type having unequal stator tooth thickness
has matching voltage and torque value of 4.84 V and 2.54 Nm, respectively.
Nevertheless, the developed machine type has lower flux-weakening capability,
owing to its slightly lower speed range compared to the equivalent machine that
has equal stator tooth structure.

1.0 INTRODUCTION

Stator tooth thickness and its associated influence on
the performance of an electric machine cannot be
underrated or unappreciated, as inferred from [1].
Single stator E-core machine having different tooth
sizes was proposed in [2]; the proposed single stator
E-core machine has its pole number numerically equal
to half of its stator teeth number. The studied E-core
machine is revealed to have higher torque density and
better electromagnetic outputs compared to its
equivalent conventional flux-switching machine.
Similarly, a dual stator electric machine having E-core
stator tooth structure was proposed in [3]; however, it
has equal stator teeth structure. Thus, the influence of
stator tooth thickness of the investigated machine in
this present study is considered necessary at this time,
as a guide to electric machine designers about the
significance of stator teeth size (s) on electromagnetic
and electromechanical performances of the machine.
Similarly, the stator teeth and rotor pole numbers of
an electric machine would have great influence in
most of its electromechanical and electromagnetic
outputs, as demonstrated in [4].
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The resulting torque of a flux-switching permanent
magnet (FSPM) machine would be dependent upon its
stator tooth thickness and its consequence conductor
area; in addition to the slot opening sizes [5]. An equal
ratio between stator tooth thickness and the matching
slot opening size is recommended in [5], for optimal
torque generation.

Additionally, magnitudes of torque and speed of a
given electric machine could be varied and regulated
using different control strategies, such as:
proportional-integral (PI) and proportional-derivative
(PD) controller techniques [6]. Although, proportional
derivative controller approach is recommended in [6]
over its proportional-integral method; however, both
techniques have its distinct merits and demerits. It is
important to note that these control techniques also
involve the manipulation of voltage and frequency
values of the given electric machine, in order to
achieve optimal machine efficiency.

It is revealed in [7] that implementation of unequal
stator tooth thickness of a machine coupled with
suitable optimization of its key structural variables
would result to reduced torque ripple, lower voltage
distortion as well as more symmetrical and sinusoidal
voltage waveforms, etc., besides its increased fault-
tolerance attribute. Most of these features are vital in
electric motor control and drive operations. Efficacy
of unequal stator tooth thickness in reducing the
machine’s torque ripple index is ascertained in [8] and
by extension, unwanted harmonic contents of the
machine could be drastically reduced through this
unequal stator tooth implementation scheme [9].

Asymmetric stator teeth could yield competitive
output characteristics in a machine, as demonstrated
in [10]. More so, the reliability and fault-tolerance
potentials of a machine that has unequal stator tooth
thickness is emphasized in [11], in addition to such a
machine’s economical competiveness. This is
achieved by its magnetic isolation and decoupling
abilities between the relevant phases and coils. The
utilization of unequal stator tooth thickness of a
machine in enhancing its fault-tolerance capability is
proved in [12].

An electric machine that has asymmetric stator teeth
plan is proved to have higher flux adjustment and
extended speed range possibilities [13], compared to
its counterparts with symmetric stator tooth
arrangement. Nevertheless, the implementation of
asymmetric stator teeth structure is associated with
higher cost and lower power factor implications.
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Asymmetric stator tooth arrangement can improve the
magnetic saturation withstand sustainability plus
overall machine output performance [14]; however,
special consideration must be made for rotational
direction of the rotor, in order to maximize this
technique. Similarly, significant reduction in cogging
and reluctance torque could also be realized from a
machine by adopting asymmetric stator teeth structure
[15]; albeit, with negligible reduction in its useful
torque value. By extension, the use of unequal stator
tooth thickness in mitigating cogging torque and other
undesirable machine characteristics could be applied
with its magnetic poles [16]; although, it would attract
slight level of mechanical instability on the machine,
as a penalty.

A three-phase dual stator machine having two (2)
different stator teeth thickness is analyzed and
compared in this study using finite element analysis
approach. The study is intended to provide concise
package on the effects of stator tooth thickness on both
electromagnetic and electromechanical performances
of the machine. The relevant sections of this
investigation are: Introduction, methodology, results
and discussion and conclusion.

Equal tooth thickness

Rotor

Outer stator ——3> /

Inner stator

= = V4
Stator tooth ————> / yo & //’

1(a): Existing structure havirIg equal stator tooth
thickness [3]

Unequal tooth thickness

1(b): Developed structure having unequal stator
tooth thickness

Figure 1:  The investigated structures
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2.0 METHODOLOGY

Finite element analysis is applied in the entire
computation. The studied machine structures having
both equal and unequal stator tooth thickness are
displayed in Figure 1. Total magnetic flux in an FSPM
machine is jointly contributed by both the magnets and
armature windings; however, the resulting flux is
largely dominated by components due to magnets. An
insignificant portion of the total flux is obtained from
the armature windings. Owing to this large flux
contribution by the magnets, about 99 % of generated
shaft torque is usually gained from the magnetic
component. This high percentage contribution is a
unique property of FSPM machine, because it is
characterized by trivial reluctance torque worth [17];
unlike some other electrical machines that have more
torque production from the machines’ reluctance
torque, due its large saliency impacts.

The maximum flux component due to magnets (dmag)
is expressed in Equation (1), as detailed in [18]. Note
that FSPM machine’s phase flux linkage and voltage
waveforms are typically bipolar, having similar
positive and negative maxima values. The machine’s
induced-voltage (F) is given in Equation (2). Also, its
output power (P,) is expressed in Equation (3).

It is worth noting that the investigated machine is an
FSPM machine, however of dual stator structure.
Generally, dual stator machines are more expensive
and usually have more complex structure than its
equivalent single stator counterparts; though, with
remarkable electromagnetic outputs. The fundamental
machine parameters and its values are enumerated in
Table 1. The investigated machine’s operating
principle is based upon both flux-switching and
magnetically-gearing principles, as detailed in [19].

B10s =8, cos(PO) (1)
Where; ¢, is peak flux within a pole pitch period, P is
pole number and O is electrical rotor positions [18].

Ag
E=-N=£
Al (2)

Where; N represents winding turns number, A is
change symbol; ¢ is flux linkage, ¢ is simulation time
[20].

P =T 3)

Where; w is the rotational speed and 7 'is output torque
[21].
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Table 1: Basic machine values

Machine structure Existing machine | Developed machine
Stator tooth thickness, 4.55 4.55 and 4.00
mm
Slot area, mm’> 130253 x10°° 134203 x10°¢
Phase resistance, Q 0.0557 0.0541
Maximum speed, rpm 4500 4300
Knee speed, rpm 1800 1700
Stator teeth number 6
Poles 11
Stator diameter, mm 90
Rated current, A

15
Turns number

72
Magnet Neodymium
Core material M330-35A
Coil material Copper

3.0 RESULTS AND DISCUSION

Magnetic flux contours of the compared machine
types are presented in Figure 2. The investigated
machine types have fairly similar magnetic flux
outlines. Open-circuit flux linkage outlines and the
corresponding harmonic amplitudes of the compared
machine types are shown in Figure 3(a) and (b). The
machine type that has unequal stator tooth thickness
displays quite higher flux linkage amplitude than its
existing counterpart having equal stator-toothed
structure.  Consequently,  resulting  induced-
electromotive force (EMF) is higher in the developed
machine type by about 1.43 %, as depicted in Figure

3(c).

Vol. 44, No. 3, September 2025


https://doi.org/10.4314/njt.v44i3.1
http://creativecommons.org/licenses/by-nc-nd/4.0/

Awah, et al. (2025)

2(a): Existing

Figure 2:
15
10 4
Z 5
E
o 0 1
(=Y
<
E _10 - —— Developed ------ Existing
-15 T T T T
0 60 120 180 240 300 360
Rotor position (elec. deg)
3(a): Flux linkage
12

—
S
1

Developed & Existing

Flux linkage amplitude (mWhb)
N

1 2 3 4 5 6 7 8 9 10
Harmonic order

3(b): Harmonic amplitude

8
=7
3 6 A
=
S
« 4 a
=
577
_E - —— Developed ------ Existing
£

0 : : : : :

0 10 20 30 40 50 60
Copper loss (W)

3(c): Electromotive force versus copper loss

Figure 3: Comparison of phase flux linkage and

induced-EMF comparisons

The FEA predicted average and static torques are
presented in Figure 4(a) and (b). Again, the developed
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machine has larger average torque of approximately
3.00 Nm at 8 A/mm? compared to 2.84 Nm of the
existing machine type. More so, the developed
machine category has greater static torque value of
about 2.56 Nm compared to its equivalent 2.51 Nm of
the existing machine, at rated current. This higher
torque value advantage of the developed machine type
is maintained at all simulation conditions. Linear
relationship exists between the supplied loads and the
resulting torques, as shown in Figure 4(a) and (b).
Meanwhile, magnetic flux, induced-voltage and
torque of electric machines are directly related to each
other, as highlighted in [22].
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Figure 4: Comparison of average and static torque
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Axes flux of the studied machine types are presented
in Figure 5, computed over different quadrature (Q)-
axis current ratings. It is revealed that the developed
machine has practically similar quadrature-axis flux
and larger amount of direct (D)-axis flux compared to
the exiting machine topology. The direct-axis flux
amplitude seems to decease with increasing current,
due to the effect of armature reaction.

Predicted average values of self-inductance in the
machine types having equal and unequal tooth
thickness is approximately equal to 0.29 mH and 0.28
mH, respectively. The compared machine models
have matching mutual inductance value of -0.065 mH
and -0.068 mH, correspondingly. The predicted
inductance outlines are shown in Figure 6. A machine
that possesses high value of self-inductance and low
mutual inductance value is needed for fault-tolerance
sustainability activities [23]. It can be concluded that
the investigated machine types have advantages of
high self-inductance obtainable from equal stator-
toothed machine topology and low mutual inductance
from the unequal stator-toothed  machine
configuration. Therefore, each of the compared
machine types has its individual peculiarities, in terms
of merits and demerits, as could be deduced from
Figure 6(a) and (b), separately. The axes inductance is

HHE .
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higher in the existing machine type by 1.65 %
compared to the developed one, at rated load.
However, it is worth mentioning that high amount of
axes inductance in a machine can affect its saturation
level negatively and would subsequently reduce its
electric overloading potential, as highlighted in [24]
and [25]. Furthermore, the magnetic force amplitudes
on the rotor of the analyzed machine types are
compared in Figure 8; though, these machine types
have dissimilar magnetic force waveforms or outlines.
It is also glaring that the resulting rotor magnetic force
is directly proportional to the applied load current; the
relative difference in force magnitude increases at
higher electric loadings.
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The existing machine has longer speed range than the
developed machine, as shown in Figure 9. Although,
longer speed range is a desirable machine quality;
however, mechanical stress on a machine is directly
related to its speed rating [26], an enlarged speed
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Figure 9:  Power versus speed
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rating would usually result to more mechanical stress
on the device. Thus, the existing machine would battle
with marginally higher amount of mechanical
instability relative to its equivalent developed
machine type. It is worth noting that the developed
machine has slightly higher power value of 106.30 W
than the existing machine which has a corresponding
power of 103.78 W, at rated load and speed
conditions; however, the resulting shaft power of
existing machine outweighs that of the developed
machine at high operating speed. The axes inductance
values of a machine and hence, its matching saliency
ratios (i.e. the axes inductance ratios) [27] is vital in
determining its power and torque ratings [28] as well
as the consequent speed coverage; particularly, under
field- or flux-weakening situation [29]. Meanwhile,
these machine’s metric parameters may also be
influenced by the machine’s inductance non-linear
effect, especially at constant power operating region
[30].

80
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= 0A
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-80 ———15A > 20A

-80 -60 -40 -20 0 20 40 60 80
X-axis force (N)

8(b): Developed

Comparison of unbalanced magnetic force

4.0 CONCLUSION

Performance comparison of a machine that has two (2)
different stator tooth thickness is studied and
presented in this current research using finite element
technique. It is shown that the machine type that has
unequal tooth thickness exhibits larger percentage flux
and voltage value of 1.87 % each, at open circuit
condition. It also displays greater percentage torque
and power value of 2.37 % and 2.35 %, respectively,
at rated load conditions; in addition, with lower
inductance value. Predicted shaft power of the
machine type having equal stator tooth thickness is
higher at high speed operation; which is a good flux-
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weakening feature for traction and vehicle uses. The
compared machine types have comparable magnetic
force on its rotor. Each of the investigated machine

types

possesses  distinct  advantages  and

disadvantages, depending on application context.
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