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Abstract 

This research investigates the performance of a novel deep reinforcement 

learning (DRL) agent in comparison with traditional intelligent control 

approaches for manipulating the tilt angles of ball-and-plate system. This study 

highlights the strengths and weaknesses of each technique through extensive 

experimentation and analysis of step response and trajectory tracking metrics 

while trailing a circular path. While the DRL agent demonstrates rapid 

responsiveness, it exhibits inferior trajectory tracking accuracy compared to the 

other methods, namely, Proportional-Integral-Derivative (PID), Model 

Predictive Control (MPC), Sliding Mode Control (SMC), and Linear Quadratic 

Regulator (LQR). These findings emphasize the importance of balancing speed 

and precision in control system design. Traditional methods like PID, MPC, and 

SMC showcase robust performance in achieving precise trajectory tracking with 

minimal error and overshoot, underscoring their suitability for practical 

applications. This comparative analysis contributes valuable insights for 

researchers and practitioners in control engineering, guiding the development 

of suitable control strategies for dynamic systems. Future research can consider 

hybrid control strategies that combine the strengths of traditional methods with 

reinforcement learning to achieve optimal tuning of the reinforcement learning 

agent for superior performance. 
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1.0  INTRODUCTION 

The Ball-and-Plate system is a benchmark control 

system in the field of control engineering, offering a 

dynamic and challenging environment for testing and 

developing control algorithms [1], [2]. Characterized 

by its simplicity yet rich dynamics, this system has 

been extensively studied over the years, serving as a 

playground for exploring various control methodo-

logies [3]. This system, consisting of a tiltable plate 

upon which a ball can move freely, presents inherent 

nonlinearities, coupled dynamics, and uncertainties 

making it an ideal testbed for evaluating the efficacy 

of intelligent control methodologies [4]. 

 

Over the years, researchers have explored myriad 

intelligent control approaches to tackle this problem, 

aiming to achieve robust and efficient performance. 

Early studies primarily focused on conventional 

control techniques such as Proportional-Integral- 

Derivative control [5], [6], [7], [8]. These methods laid 

the foundation for further research by demonstrating 

basic control principles and establishing performance 
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benchmarks against which more advanced techniques 

could be compared. 

 

With the advent of intelligent control paradigms, the 

focus shifted towards incorporating machine learning 

and artificial intelligence (AI) algorithms for 

addressing the ball and plate problem [9], [10]. One 

prominent approach involved the utilization of neural 

networks for describing the system dynamics while 

designing adaptive control schemes [11]. These 

studies showcased the potential of neural network-

based controllers in achieving superior tracking 

accuracy as well as disturbance rejection compared to 

traditional methods. However, challenges related to 

network training, generalization, and computational 

complexity remained significant hurdles in practical 

implementations. 

 

Presently, the field of intelligent control for the ball 

and plate problem continues to evolve rapidly, fueled 

by advancements in computational techniques, 

machine learning, and optimization algorithms. Future 

research directions may include the exploration of 

reinforcement learning-based approaches [12], [13], 

decentralized control strategies and real-time 

implementation considerations[14] . By building upon 

the rich legacy of previous studies and leveraging the 

latest developments in control theory and AI, 

researchers aim to develop robust, efficient, and 

scalable solutions for addressing the challenges posed 

by the ball and plate system in various practical 

applications. 

 

Looking ahead, recent advancements in the field have 

seen a shift towards hybrid intelligent control 

approaches that combine multiple techniques to 

leverage their respective strengths. Hybrid control 

schemes, integrating elements of fuzzy logic, neural 

networks, and evolutionary algorithms, have 

demonstrated remarkable performance improvements 

in terms of stability, tracking accuracy, and 

disturbance rejection. By synergistically combining 

different intelligent control paradigms, researchers 

aim to further enhance the suitability of this system for 

application in areas such as robotics, automation, and 

motion control. 

 

This paper evaluates PID, MPC, SMC, LQR 

controllers along with a DRL agent applied to the ball-

and-plate problem. By examining and evaluating the 

effectiveness of these techniques, this study aims to 

provide insights into the strengths, weaknesses, and 

applicability of each approach in tackling the 

challenges posed by the ball-and-plate system. 

 

Through rigorous experimentation and performance 

evaluation, this research endeavors to shed light on the 

relative merits of different intelligent control 

strategies, offering valuable guidance for researchers 

and practitioners in selecting the most suit able 

approach for their specific application requirements. 

Ultimately, the findings of this study contribute to 

advancing the state-of-the-art in intelligent control 

methodologies for complex dynamic systems, paving 

the way for improved performance and reliability in 

various real-world applications. 

 

The contribution of the paper lies in its comprehensive 

comparative analysis of various intelligent control 

approaches for the ball and plate problem. By 

systematically evaluating and contrasting different 

methodologies, including classical control techniques, 

neural network-based control, and hybrid intelligent 

control schemes, the paper provides valuable insights 

into the strengths and limitations of each approach. 

This comparative study facilitates a deeper 

understanding of the underlying principles and 

mechanisms governing the control of the ball and plate 

system, thereby guiding researchers and practitioners 

in selecting the most suitable control strategy for 

specific application requirements. 

 

The rest of this paper is structured as follows: In 

section 2, the mathematical model of the Ball-and-

Plate system is given. Section 3 gives the design and 

integration of the various controllers while section 4 

presents a comparison on the results obtained. Finally, 

in section 5, a conclusion and recommendation for 

future works is given. 

 

2.0  MATHEMATICAL MODELLING 

The mathematical description of the Ball-and-Plate 

system can be obtained by decomposing the system 

along the x and y axis into two sub-components 

according   to [15]. This decomposition is illustrated in 

Figure 1. 

 

 
Figure 1:  A pictorial illustration of a Ball-and-

Plate system 

https://doi.org/10.4314/njt.v44i2.16
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The mathematical equation representing the system’s 

dynamics can be formulated using the Euler-Lagrange 

equation given in equation (1). 

𝑄𝑖 =
𝑑

𝑑𝑡
[

𝜕𝐸

𝜕𝑞̇𝑖
] −

𝜕𝐸

𝜕𝑞𝑖
+

𝜕𝑃

𝜕𝑞𝑖
                        (1) 

 

This equation describes the dynamics of a system by 

relating the system’s energy 𝐸, to its generalized 

coordinates 𝑞𝑖 their rates of change 𝑞𝑖̇ and the 

generalized forces 𝑄𝑖 acting on the system. 

Accordingly, [16] derived the nonlinear dynamic 

equations governing the ball positioning along the 𝑥 

and 𝑦 axis as follows: 

𝑥; (𝑚𝑏 +
𝐼𝑏

𝑟𝑏
2) 𝑥𝑏̈ − 𝑚𝑏(𝑥𝑏𝛼̇2 + 𝑦𝑏𝛼̇𝛽) + 𝑚𝑏𝑔𝑠𝑖𝑛𝛼 = 0        (2) 

𝑦; (𝑚𝑏 +
𝐼𝑏

𝑟𝑏
2) 𝑦𝑏̈ − 𝑚𝑏(𝑦𝑏𝛽̇2 + 𝑦𝑏𝛼̇𝛽) + 𝑚𝑏𝑔𝑠𝑖𝑛𝛽 = 0         (3) 

 

These equations can be linearized around an operating 

point by making assumptions about the operation of 

the system according to [16]. 

 

For this study, equation (3) is neglected due to the 

symmetrical nature of the system and the following 

linear differential equation can be obtained according 

to [21]. 
7

5
𝑥𝑏̈ + 𝑔 × 𝛼 = 0                (4) 

 

A transfer function representing the plate’s inclination 

angle to the ball position can now be obtained by 

taking a Laplace transformation of equation (4). This 

results in the classical system representation given in 

equation (5). 
𝑥𝑏(𝑠)

𝛼(𝑠)
=

𝑦𝑏(𝑠)

𝛽(𝑠)
= −

5𝑔

7𝑠2
                (5) 

 

The following first-order transfer function given in 

equation (6) can be used a reliable and approximate 

representation of the workings of a servo motor [16]. 

𝐺𝑚(𝑠) =
𝑘𝑚

𝑇𝑚(𝑠)+1
               (6) 

 

When Km = −0.6864 and Tm = 0.187, the resulting 

plant system model according to [13], [16]can be 

represented as shown in equation (7). 

𝐺𝑝(𝑠) =  −
0.6854

0.187𝑠+1
× −

5𝑔

7𝑠2 =
4.803

0.187𝑠3+𝑠2         (7) 

 

Consequently, the state space model of the system can 

be derived from this transfer function as denoted in 

equations (8) and (9): 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢               (8) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                 (9) 

 

The A, B, C and D matrices are obtained as shown in 

equation (10), (11), (12) and (13). 

𝐴 =  (
−5.3476 0 0
1.0000 0 0

0 1.0000 0
)         (10) 

𝐵 =  (
1
0
0

)              (11) 

𝐶 =  (0 0 25.6845)               (12) 

𝐷 = 0                (13) 

 

3.0  CONTROLLER DESIGN 

In this section a Deep Deterministic Policy Gradient 

(DDPG) agent for controlling the ball positioning on 

the plate is proposed. This novel method is compared 

with four traditional control methods based on the 

transient and steady state responses of the overall 

system when excited by a step input signal. 

Additionally, the trajectory tracking performance of 

the various controllers will be analyzed based mean 

absolute errors when trailing a circular path. 

 

The simulations and analysis were conducted in 

MATLAB on a Dell Laptop with RAM size of 16 GB. 

The agent was trained for 1666 episodes and the 

training time was 5997 seconds. 

 

3.1  Deep Reinforcement Learning 

Reinforcement learning (RL) provides a robust 

framework for training agents to make decisions in 

dynamic environments through iterative interaction. 

When applied to control systems such as the ball and 

plate system, RL enables agents to learn optimal 

actions by maximizing cumulative rewards [17] Deep 

Deterministic Policy Gradient (DDPG), an off-policy 

actor-critic algorithm, is particularly adept at handling 

continuous action spaces. In the context of the ball and 

plate system, DDPG utilizes neural networks to 

approximate both the actor (policy) and critic (value 

function) [18]. Mathematically, DDPG updates the 

actor parameters 𝜃𝜋 and critic parameters 𝜃𝑄 by 

minimizing the loss functions given in equation (14) 

and (15): 

 

𝐿(𝑄𝜋) =  −𝐸[𝑄(𝑠, 𝜋(𝑠; 𝜃𝜋))]        (14) 

𝐿(𝜃𝑄) = 𝐸[(𝑄(𝑠, 𝑎; 𝜃𝑄) − 𝑦)2]      (15) 

Where, 𝑦 is the cumulative long-term reward 

expressed in equation (16): 
 

𝑦 = 𝑅𝑖 + 𝛾𝑄𝑡+1(𝑆𝑖
𝑡+1, 𝜇𝑡+1(𝑆𝑖

𝑡+1/𝜃𝜇)/𝜃𝑄)     (16) 

 

By iteratively refining these parameters through 

experience, DDPG learns complex control policies 

directly from high-dimensional observations, 

effectively stabilizing the ball on the plate despite 

environmental uncertainties and disturbances, thus 

showcasing the efficacy of RL in real-world control 

scenarios [19]. A block diagram illustrating the DDPG 

controller integrated with the Ball-and-Plate system is 

shown in Figure 2 while the rewards generated after 

https://doi.org/10.4314/njt.v44i2.16
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1666 training episodes is shown in Figure 3. The states 

are defined as shown in equation (17): 

𝑠 = (𝑒(𝑧), 𝑒(𝑧) ×
𝐾𝑇𝑠

𝑧−1
, 𝑒(𝑧) ×

𝐾(𝑧−1)

𝑇𝑠𝑧
)       (17) 

 

The reward signal evaluates the agent’s performance 

continually using equation (18): 

𝑅𝑖 =  −(𝑢(𝑡)2 + 𝑒(𝑡)2 + 10[𝑂𝑅(𝑇1, 𝑇2)]) + 10     (18) 

Where, 𝑇1 and 𝑇2 denotes stopping conditions the 

current episode and e(t) represents error signal. 

 

 
Figure 2:  Closed-loop system of the DDPG 

controller integrated with the Ball-and-Plate system 

 

 
Figure 3:  Rewards generated after training the 

DDPG agent for 1666 episodes 

 

The step response and trajectory tracking performance 

of the proposed controller is shown in Figure 4(a) and 

4(b) respectively. 

 

The quantitative performance of the system can also 

be obtained as: tr = 0.0102 seconds, ts = 7.8975 

seconds, Mp = 18.6290%, and MAE = 0.0158. 

Additionally, the trajectory tracking error is obtained 

as MAE = 7.0924e + 03. 

 
4(a): Step response plot 

 
4(b):   Trajectory tracking plot 

Figure 4:  Step response and trajectory tracking of the DDPG controller when integrated with the Ball-and-

Plate system 

 

3.2  Proportional Integral Derivative Control 

Proportional Integral Derivative (PID) controllers 

have widespread usage in various engineering 

applications, including robotics and automation 

systems. The PID controller operates by continuously 

calculating an error signal, which is the difference 

between a desired setpoint and the measured process 

variable. The controller then adjusts the system’s 

output based on three components: proportional, 

integral, and derivative terms in accordance with 

equation (19). 

 

𝑢(𝑡) = 𝐾𝑝 × 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)
∞

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡)      (19) 

 

The proportional term contributes to the output 

proportionally to the current error magnitude, aiming 

to minimize steady-state error. The integral term 

integrates the error over time, addressing any 

accumulated error and eliminating steady-state 

offsets. Meanwhile, the derivative term considers the 

rate of change of the error signal, providing damping 

to prevent overshoot and improve system stability. 

The layout of the PID controller connected to the Ball-

and-Plate system is given in Figure 5. 

 

 
Figure 5:  PID controller integrated with the Ball-

and-Plate System 

 

The PID controller for stabilizing the ball positioning 

was tuned using the transfer function method of 

MATLAB’s inbuilt PID tuner with a response time of 

https://doi.org/10.4314/njt.v44i2.16
http://creativecommons.org/licenses/by-nc-nd/4.0/
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0.7290 seconds and transient behavior of 0.600 

seconds. The proportional, integral and derivative 

gains were obtained as follows: Kp = 

0.071913824221689, Ki = 0.00135667138094145, 

and Kd = 0.641396703623824. The step response of 

the overall system integrated with the PID controller 

is given in Figure 6(a) while the circular trajectory 

tracking performance is demonstrated in Figure 6(b). 

 

 
6(a)    Step response plot 

 
6(b)    Trajectory tracking plot 

Figure 6:  Performance of the PID controller when integrated with the Ball-and-Plate system illustrated by 

step response and trajectory tracking plots 

The quantitative performance of the system can also 

be obtained as: tr = 0.4812 seconds, ts = 1.7612 

seconds, Mp = 8.9739%, and MAE = 0.4262. 

Additionally, the trajectory tracking error is obtained 

as MAE = 0.1149 

 

3.3  Model Predictive Control 

Model Predictive Control (MPC) is a control method 

that uses a dynamic model to predict future system 

behavior and determine optimal control actions over a 

defined time horizon. Unlike traditional controllers 

that compute feedback based on current states, MPC 

considers future states and system dynamics, enabling 

it to handle constraints and anticipate future 

disturbances [28]. The MPC algorithm formulates an 

optimization problem where the objective is typically 

to minimize a cost function (Jmpc), which incorporates 

control objectives such as setpoint tracking, 

disturbance rejection, and constraint satisfaction. 

 

𝐽𝑚𝑝𝑐 = ∑ (𝑟𝑘+𝑗 − 𝑦𝑘+𝑗
𝑐− )

2
+ 𝑤 ∑ ∆uk+1

2𝑚−1
𝑖=1

𝑝
𝑖=1      (20) 

 

Given that: 
𝑟𝑘+𝑗 − 𝑦𝑘+𝑗

𝑐− = 𝑟𝑘+𝑗 − ∑ 𝑆𝑖∆𝑢𝑘−𝑖+𝑗
𝑛−1
𝑖−1 + 𝑆𝑛∆𝑢𝑘−𝑛+𝑗 + 𝑑𝑘+𝑗 −

∑ 𝑆𝑖∆𝑢𝑘−𝑖+𝑗
𝑗
𝑖=1                   (21) 

Where 𝑟𝑘+𝑗 is the reference signal and the 𝑦𝑘+𝑗
𝑐−   is the 

manipulated signal, the variable w accounts for the 

weights and 𝑢𝑘+1 describes the control input for a time 

step 𝑘. The variables 𝑆𝑖 … 𝑆𝑛 accounts for the model 

coefficients. By solving this optimization problem 

iteratively at each time step, MPC generates control 

signals that steer the system towards optimal 

performance while satisfying constraints. 

 

 
Figure 7:  MPC controller integrated with the Ball-

and-Plate System 

 
8(a)    Step response plot 

 
8(b)    Trajectory tracking plot 

Figure 8:  Performance of the MPC controller when integrated with the Ball-and-Plate system illustrated by 

step response and trajectory tracking plots 
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In the context of the Ball-and-Plate problem, MPC 

could provide robust and adaptive control by 

continuously predicting the ball’s trajectory and 

optimizing control actions to maintain stability and 

achieve desired performance objectives despite 

uncertainties and external disturbances. The overall 

layout the MPC controller integrated to the Ball-and-

Plate system is shown in Figure 7 while the step 

response trajectory tracking plots are given in Figures 

8(a) and 8(b) respectively. 

 

The quantitative performance of the system can also 

be obtained as: tr = 0.8485 seconds, ts = 0.9867 

seconds, Mp = 0.0000%, and MAE = 0.3675. 

Additionally, the trajectory tracking error is obtained 

as MAE = 0.5845. 

 

3.4  Sliding Model Control 

A Sliding Mode Controller (SMC) is a robust control 

technique renowned for its ability to ensure system 

stability and performance in the presence of 

uncertainties and disturbances. At the core of SMC is 

the concept of a sliding surface, a hyperplane in the 

state space along which the system dynamics are 

constrained to evolve. The controller’s objective is to 

drive the system states onto this sliding surface and 

keep them there. Once on the sliding surface, the 

system dynamics are governed by a simple and robust 

control law designed to maintain the system’s motion 

along this surface, effectively decoupling the system 

from uncertainties and disturbances. The sliding 

surface s is typically designed as the error between the 

desired state xd and the actual state x. 

𝑠 = 𝑥𝑑 − 𝑥             (22) 

 

The control law is often discontinuous and designed 

to drive the system trajectory onto the sliding surface. 

A common choice for the control law is: 

𝑢 =  −𝑘𝑠𝑖𝑔𝑛(𝑠)            (23) 

 

The distinctive feature of SMC lies in its ability to 

achieve robustness against parameter variations and 

external disturbances by enforcing a sliding motion, 

making it particularly suitable for systems with 

nonlinear dynamics and uncertainties. 

 

 
Figure 9:  SMC controller integrated with the Ball-

and-Plate System 

 

In the context of the Ball-and-Plate problem, a Sliding 

Mode Controller could offer precise and robust 

control, ensuring that the ball’s position on the plate 

remains stable and resilient to disturbances, even in 

the presence of uncertainties in the system dynamics 

or external forces acting on the ball. The overall layout 

the SMC controller integrated to the Ball-and-Plate 

system is shown in Figure 9 while the step response 

trajectory tracking plots are given in Figures 10(a) and 

10(b) respectively. 

 

 
10(a)    Step response plot 

 
10(b)    Trajectory tracking plot 

Figure 10: Performance of the SMC controller when integrated with the Ball-and-Plate system illustrated by 

step response and trajectory tracking plots 

 

The quantitative performance of the system can also 

be obtained as: tr = 0.3701 seconds, ts = 0.9997 

seconds, Mp = 0.0000, and MAE = 0.1024. 

Additionally, the trajectory tracking error is obtained 

as MAE = 0.0061. 

 

3.5  Linear Quadratic Regulator 

Linear Quadratic Regulator (LQR) control is a method 

used to design controllers for linear systems, aiming 

to minimize a quadratic cost function representing the 

system’s performance and control effort. It operates 

by computing a control law that minimizes the 

expected value of the cost function J over a finite time 

horizon, considering both the current state and future 

https://doi.org/10.4314/njt.v44i2.16
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state predictions. The LQR controller leverages a state 

feedback approach, where the control input is a linear 

function of the state variables. 

 

𝐽 =  ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
          (24) 

 

We chose 𝑄, 𝑅 matrices as follows: 

𝑄 =  (
0.3 0 0
0 0 0.21
0 0 0.1

)           (25) 

𝑅 = 0.00015              (26) 

 

By solving the associated Riccati equation, the LQR 

algorithm determines the optimal feedback gain 

matrix that minimizes the cost function, thus enabling 

precise and efficient control. 

𝐾 = (40.8079 61.2896 25.6850)     (27) 

 

LQR is particularly effective for systems with known 

dynamics and noise characteristics, providing optimal 

control solutions that balance between tracking 

desired setpoints and minimizing control effort. 

 
Figure 11: LQR controller integrated with the Ball-

and-Plate System 

 

In applications such as the Ball-and-Plate problem, 

where the dynamics can be approximated as linear and 

uncertainties are relatively low, an LQR controller 

could offer stable and accurate control to maintain the 

ball’s position on the plate while minimizing 

deviations from the desired trajectory. The overall 

layout the LQR controller integrated to the Ball-and-

Plate system is shown in Figure 11, while the step 

response trajectory tracking plots are given in Figures 

12(a) and 12(b) respectively. 

 

 
12(a)    Step response plot 

 
12(b)    Trajectory tracking plot 

Figure 12: Performance of the LQR controller when integrated with the Ball-and-Plate system illustrated by 

step response and trajectory tracking plots 
 

The quantitative performance of the system can also 

be obtained as: tr = 0.0017 seconds, ts = 1.0000 

seconds, Mp = 0.0000%, and MAE = 0.0310. 

Additionally, the trajectory tracking error is obtained 

as MAE = 0.5140. 

 

4.0  RESULT ANALYSIS 

Table 1 presents a comparative analysis of various 

intelligent control approaches for addressing the Ball-

and-Plate problem, focusing on both step response and 

trajectory tracking performance metrics. 

 

Table 1: Comparison of the 5 control methods 

investigated on the Ball-and-Plate System 
Step Response Trajectory Tracking 

Techniques tr (s) ts (s) MAE 𝑴𝒑(%) MAE 

DDPG 0.0102 7.8975 0.0158 18.6290 7.0924e+03 

PID 0.4812 1.7612 0.4262 8.9739 0.1149 

MPC 0.8485 0.9867 0.3675 0.0000 0.5845 

SMC 0.3701 0.9997 0.1024 0.0000 0.0061 

LQR 0.0017 1.0000 0.0310 0.0000 0.5140 

 

The DDPG technique exhibits a remarkably fast rise 

time (tr) of 0.0102 seconds, although with a longer 

settling time (ts) of 7.8975 seconds and a relatively 

higher peak overshoot (Mp) of 18.6290%. In terms of 

trajectory tracking, DDPG demonstrates a significa-

ntly higher mean absolute error (MAE) of 7.0924e+03 

compared to other techniques. This result suggests 

that while DDPG shows promise in terms of rapid 

response, it may require further refinement to 

improve trajectory tracking accuracy to the other 

traditional control methods like PID, MPC, SMC and 

LQR. It is also important to note that the training time 

of this DDPG agent was 5997 seconds which implies 

that this method is significantly slower than the other 

methods. 

https://doi.org/10.4314/njt.v44i2.16
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Conversely, the other methods present distinctive 

performance characteristics. PID exhibits moderate 

rise time and settling time with comparatively low 

overshoot and trajectory tracking error. MPC displays 

a longer rise time but achieves the lowest settling time 

and overshoot, resulting in precise trajectory tracking. 

SMC demonstrates a fast rise time and settling time 

with very low overshoot and trajectory tracking error, 

indicating   robust performance. LQR achieves an 

extremely fast rise time but with higher trajectory 

tracking error compared to MPC and SMC. These 

results provide insights into the comparative 

effectiveness of intelligent control methods on a 

classical control system. 

 

5.0  CONCLUSION 

In conclusion, this research provides a comprehensive 

evaluation of intelligent control approaches for the 

ball-and-plate system, focusing on both step response 

and trajectory tracking metrics. The comparative 

analysis highlights the strengths and weak- nesses of 

each technique, shedding light on their applicability 

and performance in real-world scenarios. Notably, 

while DDPG exhibits impressive responsiveness with 

a rapid rise time, it falls short in trajectory tracking 

accuracy compared to traditional control methods like 

PID, MPC, SMC and LQR. These findings underscore 

the importance of balancing speed and precision in 

control system design, particularly in dynamic 

environments where accurate trajectory tracking is 

crucial. 

 

Moreover, the study underscores the potential of 

traditional control methods, such as PID, MPC, and 

SMC, in achieving precise trajectory tracking with 

minimal over- shoot and error. Their robust 

performance across various metrics highlights their 

suit- ability for practical applications where stability 

and accuracy are paramount. Further-more, the 

research contributes to the ongoing discourse on the 

integration of reinforcement learning techniques like 

DDPG into control systems, emphasizing the need for 

further refinement to improve trajectory tracking 

capabilities. Overall, this comparative study offers 

insights into the relative merits of different intelligent 

control approaches and guiding future developments 

toward more efficient and effective control strategies 

for complex systems like the ball-and-plate setup. 

 

Future research can consider hybrid control strategies 

that combine the strengths of traditional methods with 

reinforcement learning could be investigated to 

achieve tuning of the reinforcement learning agent. 
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