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Abstract 

This study employs a combination of Vlasov’s thin-walled beam theory and a 

multi-variable power series approach to analyze the elastic stability of mono-

symmetric box girders, a class of thin-walled structural elements widely used in 

bridge engineering, subjected to eccentric transverse loading. The primary 

objective is to investigate the discrepancy between the shear center and the 

center of gravity, which induces complex coupled deformation modes, 

particularly flexural and distortional effects. Using Varbanov’s modified 

generalized displacement functions, the governing differential equation of 

equilibrium were derived based on section properties evaluated at the pole and 

shear center, through a unit displacement approach. Essential cross-sectional 

parameters were obtained using enhanced product integrals (diagram 

multiplications). Given the complexity of the governing equation and boundary 

conditions, exact closed-form solutions were not attainable. To address this, 

three analytical methods, power series, trigonometric series, and Taylor-

Maclaurin series, were applied to solve the reduced equations, enabling a 

comprehensive evaluation of flexural and distortional behaviors. Among these, 

the power series method proved most effective, accurately capturing the multi-

variable interactions required to model realistic deformation patterns. Under 

eccentric loading, maximum flexural deformation occurred at 10 and 40 meters, 

while distortional deformation peaked at 40 meters and diminished near 45 

meters. The Taylor-Maclaurin series showed maximum flexural deformation at 

30 meters and distortional deformation at 9 meters. The trigonometric series 

revealed cyclic deformation patterns indicative of fluctuating load effects but 

lacked the precision needed for complex geometries. This study addresses a 

notable gap in the literature by providing a robust analytical framework for 

mono-symmetric girders and emphasizes the importance of advanced multi-

variable analytical techniques in structural design and engineering education. 
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1.0  INTRODUCTION 

Mono-symmetric box girders, a subclass of thin-

walled structural members, are extensively employed 

in civil engineering applications, particularly in bridge 

construction, due to their favorable mechanical 

characteristics. Chief among these are their high 

strength-to-weight ratio and efficient resistance to 

flexural, torsional, and distortional deformations [1]. 

The inherent geometry of mono-symmetric box 

girders makes them especially suitable for structures 

with asymmetrical deck configurations, where 

eccentric loading is common, [2]. By optimizing 

material distribution, these girders can mitigate the 

adverse effects of eccentricity, offering improved 

structural behavior without substantially increasing 
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material costs [1], [3]. Despite these advantages, the 

analytical modeling of mono-symmetric box girders 

presents significant challenges. The primary 

complexity arises from the misalignment between the 

shear center and the centroid (center of gravity), which 

introduces non-coincident axial and shear load paths.  

 

This misalignment results in complex internal stress 

distributions and leads to elastic instability 

phenomena involving coupled deformation modes 

such as flexural-torsional, flexural-distortional, and 

combinations thereof [4], [5]. These coupled modes 

are difficult to analyze using conventional structural 

theories due to their inherent multi-dimensional 

interactions and the presence of warping 

deformations. Over the years, various theoretical 

models have been proposed to address these 

challenges, [6], [7], [8]. Early analytical techniques 

predominantly relied on trigonometric (Fourier) series 

expansions [1], which, although effective for simple 

geometries and boundary conditions, tend to suffer 

from slow convergence and increased computational 

cost for more complex configurations. Alternatively, 

Taylor–Maclaurin series methods have been utilized 

to improve accuracy in plate and shell stability 

analyses [9] and [10]. However, these methods 

become increasingly cumbersome when addressing 

multi-variable boundary value problems involving 

coupled deformation modes, as seen in thin-walled 

mono-symmetric profiles. Recognizing these 

limitations, recent research efforts have turned toward 

more sophisticated analytical formulations. In 

particular, Vlasov’s thin-walled beam theory [7], 

which incorporates warping and non-uniform torsion 

has proven effective in capturing the behavior of thin-

walled structures, especially when modified to 

account for cross-sectional asymmetry and warping 

effects, [11].  

 

The study by [12], extended Vlasov's theory by 

integrating a power series approach to evaluate the 

flexural and distortional stability of mono-symmetric 

box girders with simply supported boundary 

conditions. This method demonstrated improved 

accuracy and convergence, especially for girders 

susceptible to coupled instabilities. Furthermore, 

recent work in beam theory has introduced novel 

formulations that account for shear deformation and 

warping effects. The study by [13] presented an 

analytical solution for the buckling of thick beams 

using a cubic polynomial shear deformation theory. 

While primarily focused on thick beams, the 

principles of this approach are relevant for extending 

thin-walled theory to cases where shear flexibility and 

warping interaction are non-negligible. In addition to 

these theoretical advancements, recent investigations 

into thin-walled stability analysis have emphasized 

the need for hybrid methods capable of handling 

complex geometries, mixed boundary conditions, and 

multi-cell configurations. For instance, a study by [14] 

introduced a modified variational principle for thin-

walled box sections, which improved computational 

efficiency while maintaining accuracy for 

asymmetrical cross-sections. Similarly,  [15], in their 

work, explored the influence of boundary-induced 

warping constraints on the stability of mono-

symmetric steel box girders under lateral loading, 

highlighting the sensitivity of elastic critical loads to 

torsional-flexural interactions. Motivated by these 

gaps in the literature and the growing need for more 

versatile analytical tools, the present study proposes a 

hybrid analytical framework that combines the 

modified Vlasov thin-walled beam theory with a 

multi-variable power series expansion.  

 

Unlike existing studies, this research focuses on 

mono-symmetric box girders subjected to transverse 

loading and incorporates clamped boundary 

conditions, an area that has received limited attention. 

The objective is to derive the governing differential 

equations for elastic stability under flexural and 

distortional deformation, formulate a suitable 

displacement function, and construct shape functions 

tailored for clamped end conditions. Subsequently, the 

study determines the critical load associated with 

flexural-distortional deformations using the obtained 

shape functions. This approach not only advances the 

theoretical modeling of mono-symmetric box girders 

but also provides a foundation for practical 

applications, such as improving design codes and 

enhancing engineering education in the field of thin-

walled structure analysis. By integrating recent 

advancements and addressing unresolved analytical 

challenges, the present study contributes a novel and 

comprehensive method for assessing the elastic 

stability of complex box girder systems. 

 

2.0  METHODOLOGY 

The displacements in longitudinal (𝑈(𝑥, 𝑠)) and 

transverse (𝑉(𝑥, 𝑠)) directions for thin-walled closed 

structures under external torque are expressed as: 

 

𝑈(𝑥, 𝑠) = ∑ 𝑈𝑖
𝑚
𝑖=1 (𝑥)𝜑𝑖(𝑠);   𝑉(𝑥, 𝑠) =  ∑ 𝑉𝐾

𝑛
𝑘=1 (𝑥)𝜓𝐾(𝑠)   (1) 

Where, 𝑥: Longitudinal coordinate along the axis of 

the structural member (e.g., beam or girder); 𝑠: 

Circumferential or perimeter coordinate along the 

closed cross-section of the thin-walled structure; 𝑚, 𝑛 

: Number of mode shapes (or basis functions) used in 

the approximation of 𝑈(𝑥, 𝑠) and 𝑉(𝑥, 𝑠), 

respectively; 𝑈𝑖(𝑥): Amplitude function (or modal 
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coordinate) in the longitudinal direction for the ith 

mode, a function that varies along the length of the 

member; 𝜑𝑖(𝑠): Shape function (or mode shape) in the 

circumferential direction for the ith longitudinal 

displacement mode, captures how the displacement 

varies along the cross-section; 𝑉𝑘(x): Amplitude 

function for the kth transverse (or distortional) mode, 

also varies along the length x; 𝜓𝐾(𝑠): Transverse 

shape function for the kth mode, describes distortional 

variation along the perimeter of the cross-section. 

 

The elastic direct and shear strain on and between the 

two planes, x and s are obtained as: 

 

Direct Strain along the longitudinal direction, 

𝜀𝑥(𝑥, 𝑠): 
𝜀𝑥(𝑥, 𝑠) =

𝜕𝑈(𝑥,𝑠)

𝜕𝑥
= ∑ 𝑈𝑖

′(𝑥)𝜑𝑖(𝑠)
𝑚
𝑖=1                                    (2) 

Direct Strain along the transverse direction, 𝜀𝑠(𝑥, 𝑠): 

𝜀𝑠(𝑥, 𝑠) =
𝜕𝑉(𝑥,𝑠)

𝜕𝑠
= ∑ 𝑉𝐾

𝑛
𝑘=1 (𝑥)𝜓𝐾

′(𝑠)                              (3) 

Shear Strain between the transverse and longitudinal 

directions, 𝛾(𝑥, 𝑠): 

𝛾(𝑥, 𝑠) =
𝜕𝑈(𝑥,𝑠)

𝜕𝑠
 +

𝜕𝑉(𝑥,𝑠)

𝜕𝑥
  = ∑ 𝑈𝑖(𝑥)𝜑𝑖

′(𝑠)𝑚
𝑖=1  +

∑ 𝑉𝑘
′(𝑥)𝛹𝑘

𝑛
𝑘=1 (𝑠)                                                          (4) 

 

In similar approach, the direct elastic longitudinal and 

shear stresses associated with these strains are 

obtained as follows, 𝜎(𝑥, 𝑠): 

𝜎(𝑥, 𝑠) = 𝐸𝜀𝑥(𝑥, 𝑠) = 𝐸
𝜕𝑈(𝑥,𝑠)

𝜕𝑥
= 𝐸 ∑ 𝑈𝑖

′(𝑥)𝜑𝑖(𝑠)
𝑚
𝑖=1            (5) 

E: Young’s modulus (modulus of elasticity), a 

measure of the material's stiffness under axial loading. 

 
𝜏(𝑥, 𝑠) = 𝐺𝛾(𝑥, 𝑠) = 𝐺(∑ 𝑈𝑖(𝑥)𝜑𝑖

′(𝑠)𝑚
𝑖=1  +

∑ 𝑉𝑘
′(𝑥)𝛹𝑘

𝑛
𝑘=1 (𝑠)  )                                                      (6) 

G: Shear modulus, a measure of the material’s 

stiffness under shear loading. 

 

The strain energy 𝑈 is derived using  

U =
1

2
 [∫ ∫ ((

𝜎(𝑋,𝑆)
2

𝐸
+ 

𝜏(𝑋,𝑆)
2

𝐺
) 𝑡(𝑠) +  

𝑀2(𝑥,𝑠)

𝐸𝐼𝑠

 

𝑠

 

𝐿
 ) 𝑑𝑥𝑑𝑠]              (7) 

Where, U: Total strain energy stored in the thin-walled 

closed section due to axial, shear, and bending effects; 

t(s): Wall thickness of the thin-walled section at 

location s along the perimeter; M(x,s): Bending 

moment at the location (x,s) on the structure; Is or EIs: 

Flexural rigidity at point s, where: Is is the second 

moment of area about the axis of bending, EIs  is the 

product of Young’s modulus and Is, indicating 

resistance to bending; L: Total length of the structure 

(along the longitudinal axis x). 

 

Expanding and simplifying 𝜎2(𝑥, 𝑠) and 𝜏(𝑥,𝑠)
2 using 

summation properties: 

𝜎2(𝑥, 𝑠) =  𝐸2 ∑ 𝑈(𝑋)
′ 𝑈𝑗

′(𝑥)𝑚
𝑖=1 ∙ ∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)

𝑛
𝑗=1                  (8) 

𝜏(𝑥,𝑠)
2 = G2(∑ 𝑈𝑖(𝑥)𝑚

𝑖=1 𝑈𝑗(𝑥)  ∙ ∑ 𝜑𝑖
′(𝑠)𝜑𝑗

′(𝑠)𝑚
𝑖=1 +

∑ 𝑈𝑖(𝑥)𝑉ℎ
′(𝑥)𝑚

𝑖=1 ∙ ∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠) +∑ Uj(x)

𝑛
𝑘=1 𝑉𝑘

′(𝑥) ∙

∑ 𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝛹𝑘(s)  + ∑ 𝑉ℎ
′(𝑥)𝑛

𝑘=1 𝑉𝑘
′(x)  ∙ ∑ 𝛹ℎ

𝑛
𝑘=1 (𝑠)𝛹𝑘(s)) (9) 

 

By applying the same technique to the moment 

expression: 

𝑀2(𝑥, 𝑠) = ∑ 𝑀𝑘
𝑛
𝑘=1 (𝑠)𝑀ℎ(𝑠) ∙ ∑ 𝑉𝑘(𝑥)𝑛

ℎ=1 𝑉ℎ(𝑥)             (10) 

 

Using the total work done by external loads, WE  =
−𝑞 ∫ ∫ 𝑉(𝑥, 𝑠)𝑑𝑥𝑑𝑠

 

𝑆

 

𝐿
, the total potential energy 

becomes:     

Π =  U + WE =
1

2
 [∫ ∫ ((

𝜎(𝑋,𝑆)
2

𝐸
+ 

𝜏(𝑋,𝑆)
2

𝐺
) +

 

𝑠

 

𝐿

 
𝑀2(𝑥,𝑠)

𝐸𝐼𝑠
 ) 𝑡(𝑠)𝑑𝑥𝑑𝑠] − 𝑞 ∫ ∫ 𝑉(𝑥, 𝑠)𝑑𝑥𝑑𝑠

 

𝑆

 

𝐿
                        (11)  

𝑞 𝑜𝑟 𝑞ℎ: external load  
 

In simplifying form, substituting expansions 

for 𝜎2, 𝜏2, 𝑀2, and strain energy contributions, Π 

becomes:                                                  
Π =

1

2
[(𝐸 ∑ 𝑈𝑖

′(𝑥)𝑈𝑗
′(𝑥)𝑚

𝑖=1 ∙ ∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)
𝑛
𝑗=1 )𝑡(𝑠)𝑑𝑠 +   

(G(∑ 𝑈𝑖(𝑥)𝑚
𝑖=1 𝑈𝑗(𝑥) ∙ ∑ 𝜑𝑖

′(𝑠)𝜑𝑗
′(𝑠)𝑚

𝑖=1 + ∑ 𝑈𝑖(𝑥)𝑉ℎ
′(𝑥)𝑚

𝑖=1 ∙

∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠) + ∑ Uj(x)

𝑛
𝑘=1 𝑉𝑘

′(𝑥) ∙ ∑ 𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝛹𝑘(s) +

∑ 𝑉ℎ
′(𝑥)𝑛

𝑘=1 𝑉𝑘
′(x)  ∙ ∑ 𝛹ℎ

𝑛
𝑘=1 (𝑠)𝛹𝑘(s))) 𝑡(𝑠)𝑑𝑠 + 

1

𝐸𝐼𝑠
∑ 𝑀𝑘

𝑚
𝑘=1 (𝑠)𝑀ℎ(𝑠) ∙ ∑ 𝑉𝑘(𝑥)𝑛

ℎ=1 𝑉ℎ(𝑥)𝑑𝑠 − ∑𝑞ℎ𝑉ℎ(𝑥, 𝑠)] 𝑑𝑥        (12)  

Where, 𝑡(𝑠)𝑑𝑠 = 𝑑𝐴 

 

Taking the limits, i, j, k and h as an integers 1,2,3,4 

representing the modes of interaction, we have: 
∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)

𝑛
𝑗=1 𝑑𝐴 = ∫𝜑𝑖(𝑠)𝜑𝑗(𝑠)𝑑𝐴 =

𝑎𝑖𝑗; ∑ 𝜑𝑖
′(𝑠)𝜑𝑗

′(𝑠)𝑚
𝑖=1 𝑑𝐴 = ∫ 𝜑𝑖

′(𝑠)𝜑𝑗
′(𝑠)𝑑𝐴 = 𝑏𝑖𝑗;   

∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠)𝑑𝐴 = ∫𝜑𝑖

′(𝑠)ψℎ(𝑠)𝑑𝐴 𝑗 = 𝑐ℎ𝑖;  
∑ 𝜑𝑗

′(𝑠)𝑚
𝑖=1 𝛹𝑘(s)𝑑𝐴 = ∫𝜑𝑗

′(𝑠)ψ𝑘(𝑠)𝑑𝐴  = 𝑐𝑗𝑘; 

∑ 𝛹ℎ
𝑛
𝑘=1 (𝑠)𝛹𝑘(s)𝑑𝐴 = ∫ψℎ(𝑠)ψ𝑘(𝑠) =

 𝑟ℎ𝑘; ∑
𝑀𝑘(𝑠)𝑀ℎ(𝑠)

𝐸𝐼(𝑠)

𝑛
ℎ=1 𝑑𝐴 =

1

𝐸
∫

𝑀𝑘(𝑠)𝑀ℎ(𝑠)

𝐸𝐼(𝑠)
 = 𝑠ℎ𝑘;   

∑𝑞ℎ𝑉ℎ(𝑥, 𝑠) = ∫ 𝑞𝜓ℎ𝑑𝑠 =𝑞ℎ                                  (13)  

 

Thus, equation (12) becomes: 

Π =  
𝐸

2
∑𝑎𝑖𝑗𝑈𝑖

′(𝑥)𝑈
′
𝑗
(𝑥)𝑑𝑥 +

𝐺

2
[∑ 𝑏𝑖𝑗𝑈𝑖(𝑥)𝑈𝑗(𝑥) +

∑ 𝑐𝑖ℎ𝑈𝑖(𝑥)𝑉 ′
ℎ

(𝑥)] 𝑑𝑥 +
𝐺

2
[∑ 𝑐𝑗𝑘𝑈𝑗(𝑥)𝑉 ′

𝑘
(𝑥) +

∑ 𝑟ℎ𝑘𝑉
′
𝑘
(𝑥)𝑉 ′

ℎ
(𝑥)] 𝑑𝑥 +

𝐸

2
∑𝑉𝑘 (𝑥)𝑉ℎ(𝑥)𝑑𝑥 − ∑𝑞ℎ 𝑉ℎdx   (14) 

 

Therefore, equation (14) shows that the total potential 

energy Π is a functional of the form: 

Π = 𝐹(𝑈𝑖𝑈𝑗𝑉𝑘𝑉ℎ𝑈𝑖
′𝑈𝑗

′𝑉𝑘
′𝑉ℎ

′)                                                   (15) 

Where, Π: Total potential energy of the system, which 

includes the internal strain energy minus the work 

done by external forces. In variational methods, this is 

minimized to obtain equilibrium equations; F(...): 

Represents a functional, a mapping from a set of 

functions (in this case, displacement fields and their 
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derivatives) to a scalar quantity (the total potential 

energy). 

 

2.1  Governing Equation of Distortional Equili-

brium of Box – Girder 

The governing equations of distortional equilibrium 

for a box-girder are derived by minimizing the 

functional equation using the Euler-Lagrange 

technique in both the longitudinal and transverse 

directions. In the longitudinal direction, the 

equilibrium equation is 
 𝜕𝐹

𝜕𝑈
−

𝑑

𝑑𝑥
(

𝜕𝜋

𝜕𝑈𝑗
′) = 0           (16)

   

In the transverse direction, it is 
𝜕𝐹

𝜕𝑉ℎ
−

𝑑

𝑑𝑥
(

𝜕𝜋

𝜕𝑉ℎ
′) = 0            (17) 

Where, Fx is the first moment of area about y̅ −
𝑎𝑥𝑖𝑠, F is the area of section material. 

 

Carrying out the partial differential of equation (16) 

with respect to 𝑈𝑗, and equation (17) with respect to𝑉ℎ, 

using Euler-Lagrange,  we have: 

∑𝑏𝑖𝑗𝑈𝑖(𝑥) + ∑ 𝑐𝑘𝑗𝑉𝑘
′(𝑥) −

E

𝐺

𝑑

𝑑𝑥
∑𝑎𝑖𝑗𝑈𝑖

′(𝑥) = 0           (18) 

Where, k =  
𝐸

𝐺
 = 2(1 + 𝛾), we have: 

𝑘𝑎𝑖𝑗
𝑑

𝑑𝑥
∑𝑈𝑖

′(𝑥) − 𝑏𝑖𝑗 ∑𝑈𝑖(𝑥) − 𝑐𝑘𝑗 ∑𝑉𝑘
′(𝑥) = 0              (19) 

𝑐𝑖ℎ ∑ 𝑈𝑖
′(𝑥) + 𝑟𝑘ℎ ∑ 𝑉𝑘

′′(𝑥)𝑛
𝑘=1 −  𝑘𝑠ℎ𝑘 ∑ 𝑉𝑘(𝑥) +𝑛

ℎ=1
𝑚
𝑖=1

 
1

𝐺
∑𝑞ℎ = 0                          (20) 

 

Taking the bounds of the variables i, j and k for i and 

j = 1,2,3 and k = 1,2,3,4 and the limits of the variables 

i, h and k for i = 1,2,3 and h, k = 1,2,3,4, and extending, 

[1], determined certain coefficients with zero values 

for mono-symmetrical cross-sections, emphasized the 

interaction of torsional- distortional, flexural- 

tortional, and flexural- distortional deformations, and 

highlighted the importance of non-trivial coefficients 

associated with deformation modes 2, 3 and 4. 

[
 
 
 
 
𝑎11 = 0; 𝑎12 = 𝑎21 = 0; 𝑎13 = 𝑎31 = 0                                              
𝑏11 = 0; 𝑏12 = 𝑏21 = 0; 𝑏13 = 𝑏31 = 0                                               
𝑐11 = 0; 𝑐12 = 𝑐21 = 0; 𝑐13 = 𝑐31 = 0                                                
𝑟11 = 0; 𝑟12 = 𝑟21 = 0; 𝑟13 = 𝑟31 = 0                                                 
𝑠11 = 0; 𝑠12 = 𝑠21 = 0; 𝑠22 = 0; 𝑠13 = 𝑠31 = 0; 𝑠23 = 𝑠32 = 0 ]

 
 
 
 

(21) 

 

According to [1], the relative coefficients for bending-

deformation equilibrium are the coefficients for 

deformation modes 2 and 4. By replacing the 

irrelevant non-coefficients in the matrix equations 

obtained after the expansion of equations (19) and 

(20), while retaining the relative coefficient in 

equation (21), the governing differential equations 

(22) and (23) were obtained as follows: 

𝑉4
11  = 𝐾1             (22) 

𝜖1𝑉2
𝐼𝑉  +  𝜖2𝑉4

𝐼𝑉 − 𝛽1𝑉4
11 = 𝐾2         (23) 

Where, 𝜖1 =  𝐾𝑎22𝑐42;  𝜖2 =  𝐾𝑎22𝑟44; 𝛽1 = (𝑏22𝑟44 − 𝑐24𝑐42);  

 

𝐾1 = (
𝑐22

𝑟24𝑐42− 𝑐22𝑟44
)

𝑞4

𝐺
 − (

𝑐42

𝑟24𝑐42− 𝑐22𝑟44
)

𝑞2

𝐺
 ;  𝐾2 = 𝑏22

𝑞4

𝐺
 (24) 

Where, 𝜖1 is a deformation or strain-related parameter 

derived from the product of stiffness coefficient 𝐾𝑎22 

and geometric or mode shape coefficient 𝐶42; 𝜖2 is 

another strain-related term, also dependent on the 

same stiffness coefficient 𝐾𝑎22 and another geometric 

or mode shape term r₄₄; 𝛽1 is a coefficient reflecting 

the interaction between bending stiffness 𝑏22, and 

coupling terms 𝐶24 and 𝐶42, likely indicating a mix of 

flexural and distortional behavior; 𝐾1is a stiffness-

related coefficient combining various geometric 

constants (𝐶22 𝐶42 𝑟24 𝑟44) and generalized forces 

𝑞2, 𝑞4, scaled by shear modulus G. It likely represents 

a component of deformation or internal force 

distribution; 𝐾2 is another stiffness expression, 

combining a bending stiffness term b₂₂, generalized 

force q₄, and shear modulus G. It likely relates to 

flexural behavior. 

 

2.2  Non-Dimensional Differential Equilibrium 

Equations 

They are derived for deformation system (flexural- 

distortional), by expressing the longitudinal 

coordinate as a non-dimensional parameter within the 

structure’s limits, 

𝑋 = 𝐿𝑅 ∶ 0 ≤ 𝑅 ≤ 1            (25) 

Where, 𝑋 is the directional coordinate of the thin- 

walled structure along the span, 𝐿;  𝑅 is the 

corresponding non-dimensional surface or 

longitudinal dimension of the structure in the limits 0 

to 1, [16]. 

 

Recall: 𝑉2
𝑖𝑣(𝑥) =

𝑑4𝑉2(𝑥)

𝑑𝑥4 ;  𝑉2
′′(𝑥) =

𝑑2𝑉2(𝑥)

𝑑𝑥2 ; 𝑉4
′′(𝑥) =

𝑑2𝑉4(𝑥)

𝑑𝑥2 ;   

 𝑉4
𝑖𝑣(𝑥) =

𝑑4𝑉4(𝑥)

𝑑𝑥3
                 (26) 

 

From Equation (25),  
𝑋 = LR;  dx = LdR; dx2 = (LdR)2 = L2dR2; dx4 = (LdR)4 =

L4dR4                (27) 

 

Substituting equation (27) into equations (22) and 

(23), we have:                                   
𝑑2𝑉4(𝑅)

L2dR4  =  𝐾1                   (28) 

𝜖1
𝑑4𝑉2(𝑅)

L4dR4  +  𝜖2
𝑑4𝑉4(𝑅)

L4dR4 − 𝛽1
𝑑2𝑉4(𝑅)

L2dR2  =  𝐾2       (29) 

 

The solution to Vlasov's flexural-distortional 

equilibrium equations for a mono-symmetric box 

girder involves power series displacement functions. 

It emphasizes transverse deformation and its energy 

contribution through general solutions and boundary 

conditions. 

 

2.3  Formulation of the Displacement Function 

in the Form of a Multi-Variable Power Series  
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The power series is a mathematical technique for 

solving differential equations by representing a 

function as an infinite sum of terms involving powers 

of a variable, [17]. It is particularly useful for linear 

ordinary differential equations, ODEs, allowing 

solutions to be expressed as power series expansions 

like;   
𝑤 = 𝑤(𝑥) = ∑ 𝛿𝑚(𝑥 − 𝑥0)

𝑚 =∞
𝑚=0 𝛿0 + 𝛿1(𝑥 − 𝑥0) + 𝛿2(𝑥 −

𝑥0)
2 + 𝛿3(𝑥 − 𝑥0)

3 + 𝛿4(𝑥 − 𝑥0)
4 +  𝛿5(𝑥 − 𝑥0)

5 + 𝛿6(𝑥 −

𝑥0)
6 + 𝛿7(𝑥 − 𝑥0)

7 + 𝛿8(𝑥 − 𝑥0)
8 + …       (30) 

Here, δ represents the polynomial, and e denotes the 

exponential function. 

 

The function w(x) is expressed as a power series 

centered at x0 , with coefficients 𝛿𝑚 representing real 

or complex constants. If 𝑥0 = 0, the series simplifies 

to a power series in powers of x, equation (31)  and 

differentiation of this series up to the seventh and 

eighth times is discussed. 
𝑤 = 𝑤(𝑥) = ∑ 𝛿𝑚𝑥𝑚 =8

𝑚=0 (𝛿0 + 𝛿1𝑥 + 𝛿2𝑥
2 + 𝛿3𝑥

3 +

𝛿4𝑥
4 + 𝛿5𝑥

5 + 𝛿6𝑥
6 + 𝛿7𝑥

7 + 𝛿8𝑥
8)         (31)

  
𝑤𝑉11  =  5040𝛿7 + 40320 𝛿8𝑥 + …∑ 𝑚 (𝑚 − 6)∞

𝑚=7 𝛿𝑚𝑥𝑚−7     
(32)                                          

𝑤𝑉111 =  40320𝛿8 + … ∑ 𝑚  ∞
𝑚=8 (m − 7)𝛿𝑚𝑥𝑚−8    (33) 

 

Into the ordinary equation 
(𝛿1 + 2𝛿2𝑥 + 3𝛿3𝑥

2 + ∙∙∙ + 8𝛿8𝑥
7) − (𝛿0 + 𝛿1𝑥 + 𝛿2𝑥

2 +∙∙∙

+ 𝛿7𝑥
7) = 0                                             (34) 

Then we collect like powers of x, finding:  
(𝛿1 − 𝛿0)  + (2𝛿2 − 𝛿1)𝑥 + (3𝛿3 − 𝛿2)𝑥

2 + … .+(8𝛿8 −

𝛿7)𝑥
7 = 0             (35) 

Equating the coefficient of each power of x to zero, 

we have:  

𝛿1 − 𝛿0 = 0, 2𝛿2 − 𝛿1 = 0 , 3𝛿3 − 𝛿2 = 0,…8𝛿8 − 𝛿7 = 0 (36)

    

Solving these equations, we may express 𝛿1, 𝛿2, 𝛿3, 𝛿4 …, 

𝛿8 in terms of 𝛿0, which remains arbitrary: 

𝛿1 = 𝛿0, 𝛿2 =
𝛿1

2
=

𝛿0

2!
, 𝛿3 =

𝛿2

3
=

𝛿0

3!
, 𝛿4 =

𝛿3

4
=

𝛿0

4!
, … , 𝛿8 =

𝛿7

8
=

𝛿0

8!
                                                         (37) 

40320𝛿8 −  5040𝛿7  =  0  ,   𝛿8 =
𝛿7

8
         (38) 

 

With these values of the coefficients, the series 

solution becomes the known general solution, viz. 

general solution, That is, 

𝑤(𝑥) = 𝛿0 + 𝛿0𝑥 +
𝛿0

2!
𝑥2 + ⋯

𝛿0

8!
𝑥8 = 𝛿𝑜 (1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
) = 𝛿0𝑒

𝑥         (39) 

              

2.4  Extension of a Single-Variable Power Series 

to a Multi-Variable Finite Polynomial Displacem-

ent Function Incorporating Step Functions 

The potential energy of a thin-walled box girder under 

flexural-distortional load is represented by the beam's 

transverse deformation "w," which can be expressed 

as a power series displacement function for clamped- 

clamped (CC) supported  conditions.  

 

STEP 1: Homogeneous Solution. From equation (39),  

𝑤(𝑥) = 𝛿0𝑒
𝑥             (40) 

 

Based on the binomial coefficients and theorem at a 

point where m = 8, we have:  
(𝛿 + 1)𝑚 = 1. 𝛿0 +  8. 𝛿0 + 28. 𝛿0 + 56. 𝛿0 +  70. 𝛿0 + 56 𝛿0 +

 28𝛿0 +  8𝛿0 + 𝛿0. 1 = 0           (41) 

 

Then general solution of the homogenous ODE is 

represented as a finite polynomial in x with 

coefficients, 𝛿1, 𝛿2, 𝛿3, … , 𝛿8 , multiplied by the series 

expansion of 𝑒𝑥 as follow: 
𝑤ℎ = (𝛿1  +  𝛿2𝑥 + 𝛿3𝑥

2 + 𝛿4𝑥
3 + 𝛿5𝑥

4  + 𝛿6𝑥
5 + 𝛿7𝑥

6  +

𝛿8𝑥
7)𝑒𝑥                  (42) 

 

Therefore, in general, the logarithmic base (e), log. 

𝑒𝑥is equal to 𝐼𝑛𝑒𝑥,where x > o. From the key properties 

of the natural logarithm, it follows that,𝐼𝑛𝑒𝑥=𝑥, 

hence,equation (42) becomes: 
𝑤ℎ = 𝛿1𝑥 + 𝛿2𝑥

2 + 𝛿3𝑥
3 + 𝛿4𝑥

4  + 𝛿5𝑥
5 + 𝛿6𝑥

6  +  𝛿7𝑥
7  +

 𝛿8𝑥
8                      (43) 

 

Applying the properties of binomial expansion, we 

obtain; 
(𝛿 + 1)8 = 𝛿1𝑥 + 𝛿2𝑥

2 + 𝛿3𝑥
3 + 𝛿4𝑥

4 + 𝛿5𝑥
5 + 𝛿6𝑥

6  +

 𝛿7𝑥
7  +  𝛿8𝑥

8                              (44) 

 

The binomial expansion of (δ+1)8 becomes binomial 

expansion coefficients similar to the sum of 

consecutive positive integers as follows: 

1.
𝛿1

𝛿0
+ 2.

𝛿2

𝛿1
+ 3.

𝛿3

𝛿2
+  4.

𝛿4

𝛿3
+  5.

𝛿5

𝛿4
 +  6.

𝛿6

𝛿5
  +  7.

𝛿7

𝛿6
  +  8.

𝛿8

𝛿7
  (45) 

 

The hypothesis of equation (45) corresponds to the 

following expression: 

∑ 𝑅.
𝛿𝑅

𝛿𝑅−1

8
𝑅=1 = 1.

𝛿1

𝛿0
+ 2.

𝛿2

𝛿1
+ 3.

𝛿3

𝛿2
+  4.

𝛿4

𝛿3
+ 5.

𝛿5

𝛿4
 +  6.

𝛿6

𝛿5
  +

 7.
𝛿7

𝛿6
  +  8.

𝛿8

𝛿7
             (46) 

Where R = 1 

 

Then, from the arithmetic series formula for the sum 

of consecutive integers, we obtained the following 

sum of the first 8 positive integers as follow: 
[8(8+1)]

2
 = 36                           (47) 

 

STEP 2: Particular Solution: From equation (39), let, 

 𝑤𝑝 = 𝛿0𝑥
8𝑒𝑥              (48) 

[
 
 
 
 
 
 
 
 
 
 wp1=δo(8x7 + x8)ex

wp11=δo(56x6+16x7+x8)ex

wp111  =δo(336x5+169x6+ 24x7 + x8)ex

wp1v  =δo(1680x4+1350x5+337x6 + 32x7+x8)ex

wpv=δo(6720x3+8430x4+3372x5+561x6+40x7+x8)ex

wpv1=δo(20160x2+40440x3+25290x4+6738x5+841x6+48x7+x8)ex

wpv11=δ
o
(40320x+141480x2+141600x3+58980x4+11784x5+1177x6+56x7+x8)ex

wpv111=δo(40320+323280x+566280x2+377520x3+117900x4+18846x5+1569x6+64x7+x8)ex
]
 
 
 
 
 
 
 
 
 
 

  (49)    
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Here, equation (41), becomes; 
1. 𝛿0 +  8. 𝛿0 + 28. 𝛿0 + 56. 𝛿0 +  70. 𝛿0 + 56 𝛿0 +  28𝛿0 +

 8𝛿0 + 𝛿0. 1 =  36        (50) 

 

Substituting equation (49) into equation (50), gave: 
(𝛿𝑜(40320 + 323280𝑥 + 566280𝑥2 + 377520𝑥3 +
117900𝑥4 + 18846𝑥5 + 1569𝑥6 +  𝛿 + 64𝑥7 +
𝑥8)+8𝑜(40320𝑥 + 141480𝑥2 + 141600𝑥3 + 58980𝑥4 +
11784𝑥5 + 6738𝑥5 + 841𝑥6 + 48𝑥7+70𝛿𝑜(1680𝑥4 +
1350𝑥5 + 337𝑥6 + 32𝑥7 + 𝑥8) + 56𝛿𝑜(336𝑥5 +
169𝑥6+ 24𝑥7 + 𝑥8 + 1177𝑥6  + 𝑥8)+56𝛿𝑜(6720𝑥3 +
8430𝑥4 + 3372𝑥5 + 561𝑥6 + 40𝑥7 + 𝑥8) + 56𝑥7 + 𝑥8) +

28𝛿𝑜(20160𝑥2 + 40440𝑥3 +  25290 + 28𝛿𝑜(56𝑥6 + 16𝑥7 +

𝑥8)𝑥4+8𝛿𝑜(8𝑥7 + 𝑥8) + 𝛿𝑜(𝑥
8))𝑒𝑥 =  36           (51) 

 

Omitting the linear squares, the third, fourth, fiftieth, 

sixtieth, seventieth, and eightieth terms, and omitting 

the common factor, 𝑒𝑥, we obtain; 

40320𝛿𝑜 =  36              (52) 

𝛿𝑜 =  8.9286 × 10−4                                 (53)            

𝑤𝑝  = 8.9286 × 10−4𝑥8𝑒𝑥               (54) 

 

STEP 3: Now, w(x)  = 𝑤ℎ + 𝑤𝑝 
𝑤(𝑥) = (𝛿1  +  𝛿2𝑥 + 𝛿3𝑥

2  +  𝛿4𝑥
3 + 𝛿5𝑥

4  + 𝛿6𝑥
5 +

𝛿7𝑥
6  + 𝛿8𝑥

7)𝑒𝑥  + 8.9286 × 10−4𝑥8𝑒𝑥             (55) 

 

Equation (55) represents the generalized polynomial 

displacement function that accurately models the 

deformed shape of a thin-walled box girder under 

combined loads using Bentham’s boundary 

conditions. 

 

2.5  Derivation of Shape Functions for a 

Clamped (C) Supported Boundary Condition 

Using Power Series, Taylor–Maclaurin Series, and 

Trigonometric Series 
Figure 1 illustrates the beam with clamped support 

conditions under various loads, where the 

displacement functions are expressed using power 

series, Taylor-Maclaurin series, and trigonometric 

series, with boundary conditions provided along the η-

direction as follows: 

 

Figure 1: Clamped-Clamped (CC) supported beam 

along the R-axis, subjected to flexural-distortional 

loading, with superimposed results from power series, 

Taylor-Maclaurin series, and trigonometric series, 

showing boundary conditions along the R-direction 

 

2.5.1 Power series shape function for CC beam 
𝑤(𝑅 = 0); 𝑤1𝑅(𝑅 = 0) = 0;  𝑤(𝑅 = 1); 𝑤1𝑅(𝑅 = 1) = 0                                                            
 

From equation (43) 

𝑤(𝑅) = Ω(𝑅 − 2𝑅3  +  𝑅5)                (56) 

Where, Ω is a proportionality constant, 𝑉2(R) and V4(R) 

are flexural and distortional deformations. 

 

Hence, the corresponding equation of deformations, 

second and fourth order derivatives, becomes:  
𝑉2(𝑅) = Ω2(𝑅 − 2𝑅3  +  𝑅5); 𝑉4(𝑅) = Ω4(𝑅 − 2𝑅3  +  𝑅5)  
                                                                               (57) 

 

𝑉2
′′(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = Ω2(−12𝑅 + 20𝑅3); 𝑉2

′𝑣(𝑅) =
𝑑4𝑉2

𝑑𝑅4
(𝑅) =

120𝑅  

𝑉4
′′(𝑅) =

𝑑2𝑉4

𝑑𝑅2
(𝑅) = Ω4(−12𝑅 + 20𝑅3); 𝑉4

′𝑣(𝑅) =
𝑑4𝑉4

𝑑𝑅4
(𝑅) =

120𝑅                (58) 

 

2.5.2 Taylor Maclaurin’s shape function for CC 

beam 
By equating the moment and elasticity equations of 

beam and integrating twice with respect to an arbitrary 

direction  𝜂, the displacement function is obtained as: 

  

𝑊𝜂 = 𝐶𝑜 + 𝐶1𝜂 ∙  +𝐶2𝜂
2 + 𝐶3 ∙ 𝜂3 + 𝐶4 ∙ 𝜂4     (59) 

Where, 𝐶𝑜 and 𝐶1 are constants of integration, 

and 𝐶4 =
𝑞

24𝐷
;     𝐶3 =

−𝑅

6𝐷
;    𝐶2 =

𝑀1

2𝐷
  .  for a uniformly 

distributed load, the function is fourth-order, as the 

highest polynomial degree is 4. Thus, in the Taylor-

Maclaurin series expansion for a beam strip along R, 

the maximum term is m = 4. The series constants 

along the R are denoted as Am, [18,19, 20], thus, 

  

w(R) = ∑ 𝐴𝑚R𝑚∞
𝑚=1                          (60) 

w(R) = ∑ 𝐴𝑚R𝑚4
𝑚=1 = (A0 + A1R + A2R

2 + A3R
3 + A4R

4)                                                 
(61) 

 

The coefficients Am of the series are determined from 

the boundary conditions at the edges of the beam. 

 

 Boundary Conditions along 𝜂 – direction  

𝑤(𝑅 = 0); 𝑤1𝑅(𝑅 = 0) = 0;𝑤(𝑅 = 1); 𝑤1𝑅(𝑅 = 1) = 0  (62) 

 

From equation (62) 

𝑤(𝑅) = Ω(𝑅2 − 2𝑅3 + 𝑅4)           (63) 

 

Hence, the corresponding equation of deformations, 

second and fourth order derivatives, becomes:  
𝑉2(𝑅) = Ω2(𝑅

2 − 2𝑅3 + 𝑅4); 𝑉4(𝑅) = Ω4(𝑅
2 − 2𝑅3 + 𝑅4)   

              (64) 

𝑉2
′′(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = Ω2(2 − 12𝑅 + 12𝑅2); 𝑉2

′𝑣(𝑅) =

𝑑4𝑉2

𝑑𝑅4
(𝑅) = 24Ω2;  

𝑉4
′′(𝑅) =

𝑑2𝑉4

𝑑𝑅4
(𝑅) = Ω4(2 − 12𝑅 + 12𝑅2); 𝑉4

′𝑣(𝑅) =

𝑑4𝑉4

𝑑𝑅4
(𝑅) = 24Ω4             (65) 
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2.5.3 Trigonometric series displacement function 

for CC beam 

Let the approximate displacement or shape function 

be, 

𝑤 = 1 − cos (
2𝜋𝑅

𝑎
)           (66) 

 

The corresponding first derivative of equation (66) 

becomes: 

𝑤1 =
2𝜋

𝑎
sin (

2𝜋𝑅

𝑎
)            (67) 

 

Boundary Conditions along 𝜂 – direction becomes:  

𝑤(𝑅 = 0); 𝑤1𝑅(𝑅 = 0) = 0;𝑤(𝑅 = 1); 𝑤1𝑅(𝑅 = 1) = 0 (68)  

 

Therefore, the assumed displacement functions 

satisfied the boundary conditions, therefore, 

𝑤(𝑅) = Ω(1 − cos (
2𝜋𝑅

𝑎
))           (69) 

 

Hence, the corresponding equations of deformation, 

second and fourth order derivatives become: 

𝑉2(𝑅) = Ω2 (1 − cos (
2𝜋𝑅

𝑎
)) ; 𝑉4(𝑅) = Ω4 (1 − cos (

2𝜋𝑅

𝑎
)) (70)

                                 

𝑉2
′′(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = (

2𝜋

𝑎
)
2
cos (

2𝜋𝑅

𝑎
) ; 𝑉2

′𝑣(𝑅) =
𝑑4𝑉2

𝑑𝑅4
(𝑅) =

− (
2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)  

𝑉4
′′(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = (

2𝜋

𝑎
)
2
cos (

2𝜋𝑅

𝑎
) ; 𝑉4

′𝑣(𝑅) =
𝑑4𝑉4

𝑑𝑅4
(𝑅) =

− (
2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)            (71) 

 

2.6  Application of Power Series Shape Function 

to Vlasov Theory on Flexural- Distortional of 

Mono-Symmetric Box Girder for Clamped 

Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (57) and (58) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - distortional loads in 

Equations (28) and (29), and solving simultaneously 

we have: 
𝑑2⋁4(𝑅)

𝐿2𝑑𝑅4 = 𝑘1  

𝜖1
𝑑4⋁2(𝑅)

𝐿4𝑑𝑅4 + 𝜖2
𝑑4⋁4(𝑅)

𝐿4𝑑𝑅4 − 𝛽1
𝑑2⋁4(𝑅)

𝐿2𝑑𝑅2 ) = 𝑘2  

Ω4
(−12𝑅+20𝑅3)

𝐿2 = k1          (72) 

Ω4 =
k1

(−12𝑅+20𝑅3) 𝐿2⁄
               (73) 

 

Substitute equation (73) into equation (29) to get Ω2:  

Ω2
24

𝐿4 𝜖1 + Ω4
24𝜖2

𝐿4 − Ω4
𝛽1

𝐿2 Ω4(−12𝑅 + 20𝑅2) = 𝑘2   (74) 

Ω2
24

𝐿4 𝜖1 + Ω4 (
24𝜖2

𝐿4 −
𝛽1

𝐿2
(−12𝑅 + 20𝑅3)) = 𝑘2    (75) 

 

Using the equation (57), the flexural deformation 

⋁2(𝑅) and the distortional deformation, ⋁4(𝑅), for 

the mono-symmetric box girder gave: 
⋁2(𝑅) = Ω2(𝑅 − 2𝑅3 + 𝑅5) ;   ⋁4(𝑅) = Ω4(𝑅 − 2𝑅3 + 𝑅5)  

⋁2(𝑅) = k2 −

k1
(−12𝑅+20𝑅3) 𝐿2⁄

(
24𝜖2
𝐿4 −

𝛽1
𝐿2(−12𝑅+20𝑅3))

24𝜖1 𝐿4⁄
(𝑅 − 2𝑅3 + 𝑅5)  

               (76) 

⋁4(𝑅) =
𝑘1

(−12𝑅+20𝑅3) 𝐿2⁄
(𝑅 − 2𝑅3 + 𝑅5)      (77) 

 

2.7  Application of Taylor Maclaurin Polynomial 

Shape Function to Vlasov Theory on Flexural- 

Distortional of Mono-Symmetric Box Girder for 

Clamped Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (64) and (65) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - ditortional loads in 

Equations (28) and (29) and solving simultaneously 

we have: 

Ω4
(2−12𝑅+12𝑅2)

𝐿2
= 𝑘1           (78) 

Ω2
24

𝐿4 𝜖1 + Ω4 (
24𝜖2

𝐿4 −
𝛽1

𝐿2
(2 − 12𝑅 + 12𝑅2)) = 𝑘2   (79) 

Certainly! Let’s isolate Ω2 and Ω4 from equations (78) 

and (79)  

 

Equation (29) involves only Ω4, so the expression for 

Ω4 is: 

Ω4 =
𝑘1

(2−12𝑅+12𝑅2) 𝐿2⁄
            (80) 

Substitute equation (80) into equation (79) to get Ω2:  

Ω2
24

𝐿4 𝜖1 +
𝑘1

(2.12𝑅+12𝑅2) 𝐿2⁄
(
24𝜖2

𝐿4 −
𝛽1

𝐿2
(2 − 12𝑅 + 12𝑅2)) = 𝑘2  

               (81) 

Ω2 =
𝑘2−

𝑘1
(2−12𝑅+12𝑅2) 𝐿2⁄

(
24𝜖2
𝐿4 −

𝛽1
𝐿2(2−12𝑅+12𝑅2))

24𝜖1 𝐿4⁄
     (82) 

 

Using the equation (64), the flexural deformation, 

⋁2(𝑅) and the distortional deformation,⋁4(𝑅), for the 

mono-symmetric box girder gave: 
⋁2(𝑅) = Ω2(𝑅

2 − 2𝑅3 + 𝑅4);  ⋁4(𝑅) = Ω4(𝑅
2 − 2𝑅3 + 𝑅4)    

⋁2(𝑅) =  
𝑘2−

𝑘1
(2−12𝑅+12𝑅2) 𝐿2⁄

(
24𝜖2
𝐿4 −

𝛽1
𝐿2(2−12𝑅+12𝑅2))

24𝜖1 𝐿4⁄
(𝑅2 − 2𝑅2 +

𝑅4)               (83) 

⋁4(𝑅) =
𝑘1

(2−12𝑅+12𝑅2) 𝐿2⁄
(𝑅2 − 2𝑅3 + 𝑅4)     (84) 

 

2.7  Application of Trigonometric Series Shape 

Function to Vlasov Theory on Flexural- 

Distortional of Mono-Symmetric Box Girder for 

Clamped Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (70) and (71) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - distortional loads in 

Equations (28) and (29), and solving simultaneously 

we have: 

Ω4
1

𝐿2 (
2𝜋

𝑎
)
2
cos (

2𝜋𝑅

𝑎
) = k1         (85) 

Ω4 =
k1

1

𝐿2(
2𝜋

𝑎
)
2

cos(
2𝜋𝑅

𝑎
)
           (86) 
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Equation (26): 

Ω2
1

𝐿4 (−(
2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)) 𝜖1 + Ω4 (

1

𝐿4 (−(
2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)) 𝜖2 −

𝛽1
1

𝐿2
(
2𝜋

𝑎
)
2
cos (

2𝜋𝑅

𝑎
)) = k2         (87) 

Substituting equation (86) into equation (87), we 

have: 

Ω2
1

𝐿4
(−(

2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)) 𝜖1 +

 
k1

1

𝐿2(
2𝜋

𝑎
)
2
cos(

2𝜋𝑅

𝑎
)
(

1

𝐿4
(− (

2𝜋

𝑎
)
4
cos (

2𝜋𝑅

𝑎
)) 𝜖2 −

𝛽1
1

𝐿2
(
2𝜋

𝑎
)
2
cos (

2𝜋𝑅

𝑎
)) = k2         (88)  

 

Ω2 =

k2−
k1

1

𝐿2(
2𝜋
𝑎

)
2

cos(
2𝜋𝑅
𝑎

)

(
1

𝐿4(−(
2𝜋

𝑎
)
4
cos(

2𝜋𝑅

𝑎
))𝜖2−𝛽1

1

𝐿2(
2𝜋

𝑎
)
2
cos(

2𝜋𝑅

𝑎
))

1

𝐿4(−(
2𝜋

𝑎
)
4
cos(

2𝜋𝑅

𝑎
))𝜖1

   

               (89) 

 

Using the equation (73), the flexural deformation 

⋁2(𝑅), and the distortional deformation, ⋁4(𝑅), for the 

mono-symmetric box girder gave: 

⋁2(𝑅) = Ω2 (1 − cos (
2𝜋𝑅

𝑎
)) ; ⋁4(𝑅) = Ω4 (1 − cos (

2𝜋𝑅

𝑎
))  

 
⋁2(𝑅) =

k2−
k1

1

𝐿2(
2𝜋
𝑎

)
2

cos(
2𝜋𝑅
𝑎

)

(
1

𝐿4(−(
2𝜋

𝑎
)
4
cos(

2𝜋𝑅

𝑎
))𝜖2−𝛽1

1

𝐿2(
2𝜋

𝑎
)
2
cos(

2𝜋𝑅

𝑎
))

1

𝐿4(−(
2𝜋

𝑎
)
4
cos(

2𝜋𝑅

𝑎
))𝜖1

(1 −

cos (
2𝜋𝑅

𝑎
))                                  (90) 

⋁4(𝑅) =
k1

1

𝐿2(
2𝜋

𝑎
)
2
cos(

2𝜋𝑅

𝑎
)
(1 − cos (

2𝜋𝑅

𝑎
))      (91) 

 

 
Figure 2:  Mono-symmetric box girder.  (The 

bridge is span 50m between piers) 

 

3.0  RESULTS AND DISCUSSION 

3.1  Numerical Mono–Symmetric Box Girder 

Bridge Problem 

Consider a mono – symmetric box Girder Bridge of 

two – ways – two – lanes carrying a live load of 

9.3N/mm (HL – 93 loading according to AASHTO), 

[21, 22,23], in addition to tandem double axle loads of 

110KN each lane. The live load is uniformly 

distributed over the 7.32m transverse width of the 

bridge of two lanes – two – way. The loads are 

positioned at the outermost possible location to 

generate the maximum bending and distortional effect 

as shown in Figure 2.  

 

3.2  Computation of Vlasov Coefficients 

The Vlasov coefficients; aij, bij, cij and skh are obtained 

by multiplying, 𝜙𝑖, 𝜓𝑖 and 𝑀𝑘 accordingly using the 

product integral for unit thickness (i.e; t = 1) as 

described by [24]. However, the modified product 

integral according to [25] is used, where the constant 

k value is unity, representing the thickness of the box 

girder, t. 

 

3.3  Evaluation of the Flexural  and Distortional 

Coefficients 
𝜖1 = 𝑘𝑎22𝑐42 = 2.5 × 123.5117 × 6.4170 = 1,981.446447  

(92) 
𝜖2 = 𝑘𝑎22𝑟44 = 2.5 × 123.5117 × 72.0033 = 22,233.12497  

(93) 
𝛽1 = (𝑏22𝑟44 − 𝑐22𝑐42) = (14.6931 × 72.0033 − 14.6931 ×

6.4170) = 963.6661            (94) 

 

k1 = (
c22

r24c42−c22r44
)

𝑞4

𝐺
− (

c42

r24c42−c22r44
)

𝑞4

𝐺
 ;  k1 =

(
14.6931

6.4170×6.4170−14.6931×72.0033
)

1.4738×106

9.6×109  −  

(
6.4170

6.4170×6.4170−14.6931×72.0033
)

1.0820×106

9.6×109
 = 114.4427732  (95)  

                                                             

k2 = 𝑏22
𝑞4

𝐺
= 14.6931 × (

1.4738×106

9.6×109
) =  2.2556969556 ×

10−3                  (96) 

 

3.4  Flexural and Distortional Deformations of 

Three Mathematical Tools or Series for Clamped 

Supported Ends 
From equation (76) and (77) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the Power 

series are obtained as follows: 
⋁2(𝑅) = 2.2556969556 × 10−3 −

114.4427732

(−4.8×10−3𝑅+8×10−3𝑅3)
(0.085375199−0.38546644(−12𝑅+20𝑅3))

7.608754356×10−3
       

 
(𝑅 − 2𝑅3 + 𝑅5)            (97) 

⋁4(𝑅) = −
114.4427732

(−4.8×10−3𝑅+8×10−3𝑅3)
(𝑅 − 2𝑅3 + 𝑅5)    (98) 

 

From equation (83) and (84) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the Taylor 

Maclaurin’s series are obtained as follows: 
⋁2(𝑅) =

   
2.2556969556×10−3−

114.4427732

(2−12𝑅+12𝑅2) 502⁄
(
24×22,233.12497

504 −
963.6661

502 (2−12𝑅+12𝑅2))

24×1,981.446447 504⁄
(𝑅2 −

2𝑅2 + 𝑅4)               (99) 

⋁4(𝑅) = −
114.4427732

(8×10−4−4.8×10−3𝑅+4.8×10−3𝑅2)
(𝑅2 − 2𝑅3 + 𝑅4)  

           (100) 

 

From equation (90) and (91) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the 

Trigonometric series are obtained as follows: 

⋁2(𝑅) = −

2.2556969556×10−3−
114.4427732

1

502(
2𝜋
𝑎

)
2

cos(
2𝜋𝑅
𝑎

)

×(
1

504(−(
2𝜋

𝑎
)
4

cos(
2𝜋𝑅

𝑎
))×22,233.12497− 0.38546644(

2𝜋

𝑎
)
2

cos(
2𝜋𝑅

𝑎
))

1

504(−(
2𝜋

𝑎
)
4

cos(
2𝜋𝑅

𝑎
))×1,981.446447
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(1 − cos (
2𝜋𝑅

𝑎
))                   (101) 

 ⋁4(𝑅) = −
114.4427732

1

502(
2𝜋

𝑎
)
2
cos(

2𝜋𝑅

𝑎
)
(1 − cos (

2𝜋𝑅

𝑎
))        (102) 

 

3.5 Discussion of Results 
This study examined the structural response of girders 

subjected to eccentric loading using three analytical 

modeling approaches: Power Series, Taylor 

Maclaurin Series, and Trigonometric Series. Each 

method was employed to evaluate deformation 

profiles, including both flexural and distortional 

effects along the girder span. The Power Series model 

demonstrated the highest spatial resolution, enabling 

it to accurately capture localized deformation 

behaviors, particularly in the mid-span region. 

Significant flexural deformation was observed 

between 10 m and 40 m, as shown in Figure 3, 

consistent with the distribution of maximum bending 

moments caused by eccentric axial and transverse 

loads. These results align with prior studies on thin-

walled members under eccentric loading, which 

showed similar flexural amplification in continuous 

systems [26].  

 

The distortional deformation, which increased from 5 

m, peaked at around 40 m, and stabilized near 45 m, 

reflects a classic transition from active warping to 

restrained end behavior, as also reported by [27]. This 

validates the need for localized reinforcements, such 

as intermediate stiffeners, web thickening, or torsional 

bracing, especially in regions of curvature reversal or 

near supports in continuous systems. In contrast, the 

Taylor Maclaurin Series model, though less capable of 

resolving fine-scale behavior, provided useful insights 

into general deformation trends. Flexural peaks were 

recorded at 5 m, 30 m, and 45 m, with the maximum 

at midspan, which is typical of simply supported or 

two-span continuous girders under distributed loading 

[28]. A distortional peak at 9 m suggests a potential 

local stress concentration, possibly due to load 

introduction or cross-sectional discontinuities. This is 

consistent with experimental work on box girders with 

asymmetric web-flange interactions [29]. While this 

model lacks local resolution, its computational 

efficiency makes it suitable for early-stage 

assessments, sensitivity analyses, and design variant 

comparisons.  

 

The Trigonometric Series model revealed sinusoidal 

deformation patterns, which are indicative of cyclic or 

dynamic influences such as moving loads, mechanical 

vibration, or wind-induced actions. Such behavior 

correlates with findings in fatigue-prone 

infrastructure, where oscillatory stress fields 

contribute to crack initiation and propagation [30]. 

Though the model lacks localized fidelity, it offers a 

valuable perspective for dynamic response estimation 

and fatigue assessment, particularly for long-span 

girders subject to recurring service loads. Compared 

to simply supported beams, which typically exhibit 

symmetric flexural behavior and zero moment at 

supports, the girders in this study, modeled as 

continuous or partially restrained, displayed 

asymmetric deformation patterns due to the influence 

of eccentric loading. Simply supported systems under 

eccentric loads may exhibit maximum deflection at 

midspan but lack the secondary warping behavior seen 

in continuous systems [31]. Similarly, in fixed-end 

conditions, the presence of end moments reduces 

midspan deflection and distributes internal forces 

more evenly, but increases the complexity of 

boundary-induced distortions [32].  

 

 
Figure 3:  Flexural and distortional variation of a 

mono-symmetric box girder along the longitudinal 

span  

 

The Power Series model captures these complex 

distributions more effectively than the other methods 

due to its multi-variable formulation and higher-order 

accuracy. Comparatively, the Power Series model, 

due to its robust formulation, is best suited for detailed 

structural evaluations under complex loading and 

boundary conditions. The Taylor Maclaurin and 

Trigonometric Series models, being single-variable, 

are more appropriate for preliminary designs, 

conceptual assessments, or screening studies. This 

mirrors standard engineering practice, where the 

analytical depth is adjusted according to the design 

phase and project complexity. The findings support an 

integrated modeling approach, combining both static 

and dynamic analyses, to gain a comprehensive 

understanding of girder behavior under eccentric 

loading. The practical implications of this study 

include optimized boundary condition selection such 

as partial fixity versus continuous support, use of 
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targeted reinforcements at midspan and near supports, 

incorporation of fatigue-resistant detailing, and 

consideration of vibration control measures for 

durability. Ultimately, model selection should be 

guided by a balance between accuracy, computational 

efficiency, and design objectives, aligning with the 

principles of performance-based and resilient 

infrastructure design. 

 

4.0  CONCLUSIONS 

The study examined a single-cell mono-symmetric 

box girder under flexural and distortional loads using 

various mathematical methods; Vlasov theory, power 

series, Taylor-Maclaurin, and trigonometric functions 

with clamped support conditions. The power series 

method outperformed the others by accurately 

modeling complex deformation and elastic stability, 

particularly under eccentric loading, due to its ability 

to incorporate multiple variables. In contrast, Taylor-

Maclaurin and trigonometric functions, suitable for 

simpler beam analyses, lacked the precision needed 

for multi-dimensional behavior. While single-variable 

methods are helpful for preliminary insights, they 

oversimplify structural behavior and cannot capture 

the full range of interactions. Moreover, comparing 

multi-variable and single-variable approaches in civil 

engineering is inherently challenging due to their 

fundamental differences in scope and applicability. 

Overall, accurate analysis and design of mono-

symmetric box girders require multi-variable methods 

like the power series to properly account for complex 

structural responses. 
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