• Bello Abdulkareem Ahmadu Bello University



Bismuth, Perovskite, Band gap, Photovoltaic, Optoelectronics


Hybrid organic–inorganic halide perovskites (OIHPs) are an emerging class of photovoltaic materials that have gained tremendous attention in the field of optoelectronics. This work aims to investigate the characteristics of bismuth-based halide perovskite via solvent engineering for solar cell application. A bismuth-based organo-inorganic perovskite was synthesized and characterized for solar cell application via solvent engineering using Gamma Butyrolactone (GBL) as the based solvent and enhanced with Methylamine (MA) and acetonitrile (ACN). A solution processing facile method was adopted in the synthesis of the perovskite.  The solvent engineering aims to tune its band gap and a remarkable band gap of 1.58eV which is within the range of an ideal band gap (1.5-1.6) required for solar cell application. The XRD micrograph exhibited several narrow sharp peaks which indicated crystallinity formation of the synthesized sample with 86% crystallinity. The FESEM/EDS micrograph indicated nature of the formed crystals and the chemical composition of the sample. A multilayer heptagonal crystal was observed. The TGA result showed that the sample is thermally stable at a temperature of 200oC before degradation occurred.


Bagher, A. M, Vahid, M. M. A, and Mohsen, M. “Types of solar cells and application”, American Journal of Optics and Photonics 3(5): 94-113; 2015.

Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Graẗzel, M., Mhaisalkar, S., Sum, T. C. “Long-range balanced electron-and hole-transport lengths in organicinorganic CH3NH3PbI3”, Science 342 (2013) 344–347, science.1243167.

Ding, C., et al. “Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells”, Nano Energy; 2018.

Zhou, H. P., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z. R., You, J. B., Liu, Y. S., and Yang, Y. “Interface engineering of highly efficient perovskite solar cells”, Science, 2014; 345:542–546

Dong, Q., Fang, Y., Shao, Y., et al. “Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals”, Science 347, 2015; 10.1126/sc ience.aaa5760, 967–70.

Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P. A., Mohammed, O. F., Sargent, E. H., and Bakr, O. M. “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science 347, 2015; 519–522,

Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Li, Q., and Sun, J. L. “Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm-3”, J. Am. Chem. Soc. 138, 2016; 9409–9412, https://do

Tsutomu, M., Kojima, A., Teshima, K., Shirai, Y. “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, Journal of the American Chemical Society, 2009; 131(17):6050-1DOI: 10.1021/j a809598r

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., and Snaith, H. J. “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science 342, 2013; 341–344,

Minemoto, T., et al. “Theoretical analysis on effect of band offsets in perovskite solar cells Sol”. Energy Mater. Sol. Cells, 2015.

Jia, X., Hu, Z., Zhu, Y. “Facile synthesis of organic–inorganic hybrid perovskite CH3NH3PbI3 microcrystals, Journal of Alloys and Compounds 725, 2017; DOI:10.1016/j. jallcom.2017.07.154

Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K., and Qi, Y. “Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis”. Energy & Environmental Science, 2016; 9(11), 3406–3410. doi:10.1039/c6ee02016

You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T. B., Chen, C. C., Lu, S., Liu, Y., Zhou, H., and Yang, Y. “Addressing the stability issue of perovskite solar cells for commercial application” ACS Nano 8, 2018:1674–1680

Liu, Y., Yang, Z., Cui, D., Ren, X., Sun, J., Liu, X., and Liu, S. “Two‐inch‐sized perovskite CH3NH3PbX3 (X= Cl, Br, I) crystals: growth and characterization”. Advanced Materials, 2015; 27(35), 5176-5183.

You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T. B., Chen, C. C., Lu, S., Liu, Y., Zhou, H., and Yang, Y. “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility”, ACS Nano 8, 2014:1674–1680

Zhao, D., Tang, Y., Song, B., Guo, J., and Hou, Y. “The Trapped Charges at Grain Boundaries in Perovskite Solar Cells”, Advanced Functional Materials, 2021; 31(49), 2107125.

Zhou, J., Xia, Z., Molokeev, M. S., Zhang, X., Peng, D., and Liu, Q. “Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. Journal of Materials Chemistry A, 2017; 5(29), 15031-15037.

Baikie, T, Y., Fang, J. M., Kadro, M., Schreyer, F., Wei, S. G., Mhaisalkar, M., Graetzel, T. J. and White. “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) sPbI3 for solid-state sensitised solar cell applications”, J. Mater. Chem. A. 1, 2013; 5628, https://doi.or g/10.1039/c3ta10518k.




How to Cite




Chemical, Industrial, Materials, Mechanical, Metallurgical, Petroleum & Production Engineering