• J. O. Oseghale Department of Polymer Technology, Nigerian Insitute of Leather and Science Technology, Zaria
  • K. K. Ajekwene Department of Polymer and Textile Technology, Yaba College of Technology, Yaba, Nigeria
  • A. I. Okele Department of Polymer Technology, Nigerian Insitute of Leather and Science Technology, Zaria
  • S. I. Ichetaonye Department of Polymer and Textile Technology, Yaba College of Technology, Yaba, Nigeria
  • I. B. Mohammed Department of Polymer Technology, Nigerian Insitute of Leather and Science Technology, Zaria




Microfillers, Microstructure, Nanofillers, Rubber Composites


The tensile strength of polymer composites is basically influenced by the geometry (size and shape) of the reinforcing material as well as interfacial interaction and bonding between the polymer matrix and reinforcing phase. This work compares the effect of microfillers to nanofillers of coconut husk, bamboo and cotton linter on the tensile strength and microstructure of vulcanized rubber matrix. The various composites were formulated and prepared using filler loading of 5, 10, 15, 20, 25 and 30 parts per hundred of rubber (pphr) in rubber matrix for both micro- and nano- fillers of the various biomass through friction shearing and compression moulding processes. Results revealed that the tensile strength of the nanocomposites predominantly increased from 1.85 MPa for neat sample to maximum values of 3.83, 3.16 and 3.85 MPa respectively for composites with 25pphr of coconut husk cellulosic nanoparticles (NR-CHNC25), 30pphr of bamboo cellulosic nanoparticles (NR-BNC30) and with 25pphr of cotton linter cellulosic nanoparticles (NR-CLNC25) conversely, the tensile strength of their counter microcomposites changes from 1.85MPa for neat sample to maximum values of 1.68, 1.67 and 2.46 MPa for composites with 10pphr of coconut cellulosic microparticles (NR-CHMC10) 15pphr of bamboo cellulosic microparticles (NR-BMC15) and 30pphr of cotton linter cellulosic microparticles (NR-CLMC30) respectively within the loading range employed in this experiment. Scanning Electron Microscope (SEM) images of microcomposites showed cases of microfiller debonding and pull-out from the rubber matrix. Hence the improved tensile strength of nanocomposites over their counterpart microcomposites was attributed to the larger surface area provided by nanofillers for interfacial bonding and effective stress transfer.



Rudi, D., Karina, M., Subyakto, A., Sulaeman, A., Dede, H., and Hadiyane, A. “Agricultural waste fibers towards sustainable and advanced ultilization”, Asian journal of plant science, Vol. 15, 2016, pp 42-55.

Verma, D., Gope, P. C., Shandilya, A., Gupta, A., and Maheshwari, M. K. “Coir Fibre Reinforcement and Application in polymer composites”, Journal of material and enviromental Science, Vol. 4 Number 2, 2013, pp263-270

Bezerra, B. E., Franca, D. C., Morais, D. D. S., Rosa, F. M., Morais, J. P. S., Araujo, M. E., and Wellen, R. M. R. “Processing and properties of PLC/Cotton linter composites”, Journal of material research, 2016, DOI: http://dx.doi.org /10.1590/1980-5373-MR-2016-0084

Chandrahasa, R., Rajamane, N. P., and Jeyalakshmi, H. “Development of Cellulose Nanofibre from Coconut Husk”, International Journal of Emerging Technology and Advanced Engineering, Vol. 4, Number 4, 2014, pp 88-93.

Lee, K.-Y., Aitomaki, Y., Berglund, L. A., Oksman, K., and Bismarck, A. “On the use of nanocelluluse as reinforcement in polymer matrix composites”, Elsevier journal of composite science and technology, Vol.105, 2014, pp15-27

Jitendra, K. P., Antonio, N. N., and Hitoshi, T. “Fabrication and Application of Cellulose Nanoparticle-Based Polymer Composites”, Society of Plastic Engineers, Vol.1, 2012, pp 770-777.

James, N., Paul, W., Krzystof, P., and Kambiz, K. “Natural fibre-reinforced polymer composit-es and nanocomposites for automobile applications” Journal of cellulose fibres: Bio- and nanopolymer composites, Vol. 6, 2011 pp 661-670.

Zhang, A., Wang, L., Lin, Y., and Mi, X. “Carbon black filled powdered natural rubber: Preparation, particle size distribution, mechanical properties, and structures”, Journal of Applied Polymer Science, Vol. 101, 2006, pp 4933–4939.

Junjie, Y., Chenchen, C., Zhai, Z., Yongkun, W., Baoquan, S., and Yuanying, Q. “The inter-phase influences on the particle-reinforced composites with periodic particles configurati-on”, Journal of applied science, Vol. 7, 2017, pp 120-130

Adreal, C. R., Denise, T. C., Marco, A. S., Leandro, J. S., and Jose, A. M. A. “Micro-structure and mechanical properties of composites resins subjected to accelerated artificial aging”, Brazilian Dental journal Vol. 24, 2013, pp 6.

Bartosz, Z., Maciej, S., Pawel, O., and Antoni, B. “Physico-Mechanical properties and micros-tructure of polymer concrete with recycled glass aggregrate materials” Journal of materials, Vol.11, 2018, pp 10-18.

Valavala, P. K., and Odegard, G. M. “Modeling techniques for determination of mechanical properties of polymer nanocomposites”, Journal of advance material science, Vol. 9, 2005, pp 34-44.

Shahzad, M. K., Samander, A. M., Nafisa, G., Sidra, S. A. I., and Muhammad, T. Z. “Fabrication and modelling of the macro-mechanical properties of cross ply laminated fibre reinforced polymer composites using artificial neural network”, Journal of advance composites material. Vol.5 2019, pp 45-48.

Oboh, J. O., Okafor, J. O., Kovo, A. S., and Abdulrahman, A. S. “Investigation of eco-friendly cellulosic nanoparticles potentials as reinforcement agents in the production of natural rubber composites” Nigerian journal of technology, Vol.36, Number 4, 2017 pp 1078-1087.

Oboh, J. O., Okafor, J. O., Kovo, A. S., and Okele, A. I. “Isolation of Cellulosic Nanoparticles from Coir Fibre for the Preparation of Natural Rubber Composites”, Journal of Polymer and Composites, Vol. 6, Number 1, 2018, pp 9–16

Farzana, H., Mehdi, H., Masami, O., and Russell, E. G. ”Polymer-matrix nanocomposi-tes processing, manufacturing and application: An overview”, Journal of composites materials Vol. 40, Number 17, 2006, pp1512-1559.

Joao, P. S., Morsyleide, F. R., Mendesa, M. S., Lidyane, D. N., Diego, M. N. and Ana, R. C. “Extraction and characterization of nanocellu-lose structure from raw cotton linters”, Journal of carbonhydrates polymers Vol. 91, 2013, pp 228-235.

Su, S. S., and Chang, I. “Commercialization of nanotechnologies: Review of production routes of nanomaterials”, UK, London: Springer international publishers 2017, pp 71- 76

Thakur, P. Y., Ram, M. Y., and Dinesh, P. S. “Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocompo-sites”, Nanoscience and Nanotechnology, Vol.2 Number 3, 2012 pp 22-48.

Visakh , P. M., Sabu, T., Kristiina, O., and Aji, P. M. “Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal propertie-s”, Composites part A applied science and manufacturing, Vol.43, 2012, pp 735-741.

Santos, F. A., Iulianelli, G. C. V., and Tavares, M. I. B. “The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications”, Journal of materials Sciences and Applications, Vol.7, 2016, pp 257-294.

Gumel, S. M., Adam, J. L., Ladan, M., and Habibu, S. “Effect of treated wood flour on Physic-Mechanical properties of filled natural rubber”, Chemsearch Journal, Vol. 4 number1, 2013 pp 1-5






Chemical, Industrial, Materials, Mechanical, Metallurgical, Petroleum & Production Engineering

How to Cite

EFFECT OF CELLULOSIC MICRO- AND NANO- SIZED FILLERS ON STRENGTH AND MICROSTRUCTURE OF RUBBER COMPOSITES. (2024). Nigerian Journal of Technology, 43(2). https://doi.org/10.4314/njt.v43i2.12