• I. V. Diwe Department of Biomedical Engineering, University of Lagos, Nigeria
  • H. E. Mgbemere Department of Metallurgical and Materials Engineering, University of Lagos, Nigeria
  • O. A. Adeleye Department of Biomedical Engineering, University of Lagos, Nigeria
  • I. C. Ekpe Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria




Microneedle, Rapid diagnostic Test, 3D-Printing, Biomarker, Drug delivery, Point of Care


In recent times, the demand for innovative, insignificantly invasive diagnostic and therapeutic biomedical tools has reached enhanced attention. Rapid Diagnostic Tests (RDTs) for diagnosis, which are non-invasive, inexpensive, simple, and deliver results accurately in less than 20 minutes, have heightened the accessibility to parasite-based analysis globally. Microneedle (MN) arrays are a fast-developing and promising technology for drug delivery and extraction of Interstitial fluid (ISF) employed for numerous diagnostic and clinical therapies. This review gives a broad overview of the characteristics and history of Microneedles (MNs) patches together with their applications in drug delivery and transdermal rapid diagnostic purposes, classifications, and categories based on the design of fabrication from previous works of literature spanning the period 2018-2023. Utilizing PubMed, Scopus, Google Scholar, and Wiley online library search engines, an online search for scientific publications published between 2018 and 2023 was conducted using the keywords "microneedle patch" and "rapid diagnostic tests." 175 articles in all were found when the search terms were used. The acquired results were then narrowed to 64 citations in this review by applying the inclusion principle. Pictorial and tabular representations highlight the various features of Microneedle patches used in interstitial fluid testing and extraction that have been documented experimentally, including numerous applications of Microneedle patches, showing their dimensions, applications, fabrication methods, and findings made. Finally, research on bio-microneedles and bio-inspired MN are reviewed. The research findings indicate that dissolving microneedles has become increasingly popular since they have several benefits over other microneedles. It is among the most well-known microneedles, and since it degrades naturally, it is a superior option for diagnosis and long-term treatment. 

Author Biographies

  • I. V. Diwe, Department of Biomedical Engineering, University of Lagos, Nigeria

    Lecturer II.

    Biomedical Engineering department,

    University of Lagos

  • H. E. Mgbemere, Department of Metallurgical and Materials Engineering, University of Lagos, Nigeria

    Associate Professor,

    Metallurgical and Materials Engineering department,

    University of Lagos

  • O. A. Adeleye, Department of Biomedical Engineering, University of Lagos, Nigeria

    Associate Professor,

    Biomedical Engineering department,

    University of Lagos

  • I. C. Ekpe, Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria

    Lecturer II (PhD).

    Mechanical Engineering department,

    Covenant University, Ota


Yeung, C., Chen, S., King, B., Lin, H., King, K., Akhtar, F., Diaz, G., Wang, B., Zhu, J., Sun, W., and Khademhosseini, A. “A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery”, Biomicrofluidics, vol. 13, no. 6, 2019, doi: 10.1063/1.5127778.

Malekjahani, A., Sindhwani, S., Syed, A. M., and Chan, W. C. W. “Engineering Steps for Mobile Point-of-Care Diagnostic Devices”, Acc. Chem. Res., vol. 52, no. 9, pp. 2406–2414, 2019, doi: 10.1021/acs.accounts.9b00200.

Taylor, R. M., Maharjan, D., Moreu, F., and Baca, J. T. “Parametric study of 3D printed microneedle (MN) holders for interstitial fluid (ISF) extraction”, Microsyst. Technol., vol. 26, no. 6, pp. 2067–2073, 2020, doi: 10.1007/s0 0542-020-04758-0.

Duarah, S., Sharma, M., and Wen, J. “Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population”, Eur. J. Pharm. Biopharm., vol. 136, no. November 2018, pp. 48–69, 2019, doi: 10.1016/j.ejpb.2019.01.005.

Koyani, R. D. “Biopolymers for microneedle synthesis: from then to now”, Biomanufactu-ring Rev., vol. 4, no. 1, pp. 1–26, 2019, doi: 10.1007/s40898-019-0006-8.

Choi, J. T., Park, S. J., and Park, J. H. “Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin”, J. Drug Target., vol. 26, no. 10, pp. 884–894, 2018, doi: 10.1080/1061186X.2018.1435664.

Luo, Z., Sun, W., Fang, J., Lee, KJ., Li, S., Gu, Z., Dokmeci, M. R., and Khademhosseini, A. “Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery”, Adv. Healthc. Mater., vol. 8, no. 3, pp. 1–9, 2019, doi: 10.1002/adhm.2018 01054.

Serrano-Castañeda, P., Escobar-Chávez, J. J., Rodríguez-Cruz, I. M., Melgoza-Contreras, L. M., and Martínez-Hernández, J. “Microneed-les as enhancer of drug absorption through the skin and applications in medicine and cosmetology”, J. Pharm. Pharm. Sci., vol. 21, no. 1, pp. 73–93, 2018, doi: 10.18433/jpps29 610.

Yang, J., Liu, X., Fu, Y., and Song, Y. “Recent advances of microneedles for biomedical applications: drug delivery and beyond”, Acta Pharm. Sin. B, vol. 9, no. 3, pp. 469–483, 2019, doi: 10.1016/j.apsb.2019.03.007.

Johnson, A. R., and Procopio, A. T. “Low cost additive manufacturing of microneedle masters”, 3D Print. Med., vol. 5, no. 1, 2019, doi: 10.1186/s41205-019-0039-x.

Economidou, S. N., Lamprou, D. A., and Douroumis, D. “3D printing applications for transdermal drug delivery”, Int. J. Pharm., vol. 544, no. 2, pp. 415–424, 2018, doi: 10.1016/j.ijpharm.2018.01.031.

Ye, Y., Yu, J., Wen, D., Kahkoska, A. R., and Gu, Z. “Polymeric microneedles for transdermal protein delivery”, Adv. Drug Deliv. Rev., vol. 127, pp. 106–118, 2018, doi: 10.1016/j.addr.2018.01.015.

Pere, C. P. P., Economidou, S. N., Lall, G., Ziraud, C., Boateng, J. S., Alexander, B. D., Lamprou, D. A., and Douroumis, D. “3D printed microneedles for insulin skin delivery,” Int. J. Pharm., vol. 544, no. 2, pp. 425–432, 2018, doi: 10.1016/j.ijpharm.2018.03.031.

Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., and Mülhaupt, R. “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem. Rev., vol. 117, no. 15, pp. 10212–10290, 2017, doi: 10.1021/acs.chemrev.7b00074.

Xue, P., Zhang, L., Xu, Z., Yan, J., Gu, Z., and Kang, Y. “Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics”, Appl. Mater. Today, vol. 13, pp. 144–157, 2018, doi: 10.1016/j.apmt.2018.08.0 13.

Pires, L. R., Vinayakumar, K. B., Turos, M., Miguel, V., and Gaspar, J. “A perspective on microneedle-based drug delivery and diagnostics in paediatrics”, J. Pers. Med., vol. 9, no. 4, 2019, doi: 10.3390/jpm9040049.

Luzuriaga, M. A., Berry, D. R., Reagan, J. C., Smaldone, R. A., and Gassensmith, J. J. “Biodegradable 3D printed polymer micronee-dles for transdermal drug delivery”, Lab Chip, vol. 18, no. 8, pp. 1223–1230, 2018, doi: 10.1039/c8lc00098k.

Leone, M., Priestera, M. I., Romeijna, S., Reza Nejadnika, M., Mönkärea, J., O'Mahony, C., Jiskoota, W., Kerstena, G., and Bouwstra, J.A. “Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterizat-ion and immunogenicity assessment”, Eur. J. Pharm. Biopharm., vol. 134, no. September 2018, pp. 49–59, 2019, doi: 10.1016/j.ejpb.201 8.11.013.

Balmert, S. C., Carey, C. D., Falo, G. D., Sethi, S. K., Erdos, G., Korkmaz, E., Falo Jr. L. D. “Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination”, J. Control. Release, vol. 317, no. July 2019, pp. 336–346, 2020, doi: 10.1016/j.jconrel.2019.11. 023.

Camović, M., Biščević, A., Brčić, I., Borčak, K., Bušatlić, S., Ćenanović, N., Dedović, A., Mulalić, A., Osmanlić, M., Sirbubalo, M., Tucak, A., and Vranić, E. “Coated 3d printed pla microneedles as transdermal drug delivery systems”, 2020, doi: 10.1007/978-3-030-1797 1-7_109.

Krieger, K. J., Bertollo, N., Dangol, M., Sheridan, J. T., Lowery, M. M., and O’Cearbhaill, E. D. “Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing”, Microsystems Nanoeng., vol. 5, no. 1, 2019, doi: 10.1038/s41378-019-0088-8.

He, X., Sun, J., Zhuang, J., Xu, H., Liu, Y., and Wu, D. “Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects”, Dose-Response, vol. 17, no. 4, pp. 1–18, 2019, doi: 10.1177/1559325819878 585.

Lim, D. J., Vines, J. B., Park, H., and Lee, S. H. “Microneedles: A versatile strategy for transdermal delivery of biological molecules”, Int. J. Biol. Macromol., vol. 110, pp. 30–38, 2018, doi: 10.1016/j.ijbiomac.2017.12.027.

Sharma, S., Hatware, K., Bhadane, P., Sindhikar, S., and Mishra, D. K. “Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies”, Mater. Sci. Eng. C, vol. 103, no. April, p. 109717, 2019, doi: 10.1016/j.msec.2019.05.002.

Courtenay, A. J., Rodgers, A. M., McCrudden, M. T. C., McCarthy, H. O., and Donnelly, R. F. “Novel Hydrogel-Forming Microneedle Array for Intradermal Vaccination in Mice Using Ovalbumin as a Model Protein Antigen”, Mol. Pharm., vol. 16, no. 1, pp. 118–127, 2019, doi: 10.1021/acs.molpharmaceut.8 b00895.

Kolluru, C., Gomaa, Y., and Prausnitz, M. R. “Development of a thermostable microneedle patch for polio vaccination”, Drug Deliv. Transl. Res., vol. 9, no. 1, pp. 192–203, 2019, doi: 10.1007/s13346-018-00608-9.

Permana, A. D., Tekko, I. A., McCrudden, M. T., Anjani, Q. K., Ramadon, D., McCarthy, H. O., and Donnelly, R. F. “Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis”, J. Control. Release, vol. 316, no. September, pp. 34–52, 2019, doi: 10.1016/j.jconrel.2019.10.004.

Pawar, S., and Shende, P. “22 Factorial Design-Based Biocompatible Microneedle Arrays Containing Artemether Co-Loaded With Lumefantrine Nanoparticles for Transepidermal Delivery”, Biomed. Microdev-ices, vol. 22, no. 1, pp. 1–15, 2020, doi: 10.1007/s10544-020-0476-8.

Ronnander, P., Simon, L., and Koch, A. “Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedl-es”, Eur. J. Pharm. Biopharm., vol. 146, no. September 2019, pp. 32–40, 2020, doi: 10.1016/j.ejpb.2019.11.007.

Yao, W., Li, D., Zhao, Y., Zhan, Z., Jin, G., Liang, H., and Yang, R. “3D Printed multi-functional hydrogel microneedles based on high-precision digital light processing”, Micromachines, vol. 11, no. 1, 2020, doi: 10.3390/mi11010017.

He, R., Niu, Y., Li, Z., Li, A., Yang, H., Xu, F., and Li, F. “A Hydrogel Microneedle Patch for Point-of-Care Testing Based on Skin Interstitial Fluid”, Adv. Healthc. Mater., vol. 9, no. 4, pp. 1–11, 2020, doi: 10.1002/adhm.2019 01201.

Al Sulaiman, D., Chang, J. Y., Bennett, N. R., Topouzi, H., Higgins, C. A., Irvine, D. J., and Ladame, S. “Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid”, ACS Nano, vol. 13, no. 8, pp. 9620–9628, 2019, doi: 10.1021/acsnano.9b04783.

Zheng, M., Wang, Z., Chang, H., Wang, L., Chew, S. W., Lio, D. C., Cui, M., Liu, L., Tee, B. C., and Xu, C. “Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstit-ial Fluid Extraction within Minutes”, Adv. Healthc. Mater., vol. 9, no. 10, pp. 1–11, 2020, doi: 10.1002/adhm.201901683.

Samant, P. P., Niedzwiecki, M. M., Raviele, N., Tran, V., Mena-Lapaix, J., Walker, D. I., Felner, E. I., Jones, D. P., Miller, G. W., and Prausnitz, M. R. “Sampling interstitial fluid from human skin using a microneedle patch”, Sci. Transl. Med., vol. 12, no. 571, pp. 1–16, 2020, doi: 10.1126/SCITRANSLMED.AAW0 285.

Zhang, X., Chen, G., Bian, F., Cai, L., and Zhao, Y. “Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomark-ers”, Adv. Mater., vol. 31, no. 37, pp. 1–8, 2019, doi: 10.1002/adma.201902825.

Zeng, Y., Wang, J., Wang, Z., Chen, G., Yu, J., Li, S., Li, Q., Li, H., Wen, D., and Gu, Z. “Colloidal crystal microneedle patch for glucose monitoring”, Nano Today, vol. 35, p. 100984, 2020, doi: 10.1016/j.nantod .2020.100984.

Zhao, W., Zheng, L., Yang, J., Ma, Z., Tao, X., and Wang, Q. “Dissolving microneedle patch-assisted transdermal delivery of methotrexate improve the therapeutic efficacy of rheumatoid arthritis”, Drug Deliv., vol. 30, no. 1, pp. 121–132, 2023, doi: 10.1080/10717544.2022.2157 518.

Gao, S., Zhang, W., Zhai, X., Zhao, X., Wang, J., Weng, J., Li, J., and Chen, X. “An antibacterial and proangiogenic double-layer drug-loaded microneedle patch for accelerating diabetic wound healing”, Biomater. Sci., vol. 11, no. 2, pp. 533–541, 2022, doi: 10.1039/d2bm01588a.

Yang, Y., Wang, P., Gong, Y., Yu, Z., Gan, Y., Li, P., Liu, W., and Wang, X. “Curcumin-zinc framework encapsulated microneedle patch for promoting hair growth”, Theranostics, vol. 13, no. 11, pp. 3675–3688, 2023, doi: 10.7150/thno.84118.

Zhang, Q., ,Shi, L., He, H., Liu, X., Huang, Y., Xu, D., Yao, M., Zhang, N., Guo, Y., Lu, Y., and Li, H. “Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway”, ACS Nano, vol. 16, no. 7, pp. 10163–10178, 2022, doi: 10.1021/acsnano.1c11016.

Yang, L., Liu, Q., Wang, X., Gao, N., Li, X., Chen, H., Mei, L., and Zeng, X. “Actively separated microneedle patch for sustained-release of growth hormone to treat growth hormone deficiency”, Acta Pharm. Sin. B, vol. 13, no. 1, pp. 344–358, 2023, doi: 10.1016/j.apsb.2022.0 4.015.

Zheng, Y., Ye, R., Gong, X., Yang, J., Liu, B., Xu, Y., Nie, G., Xie, X., and Jiang, L. “Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules”, Microsystems Nanoeng., vol. 9, no. 1, pp. 1–14, 2023, doi: 10.1038/s41378-023-00515-1.

Yang, J., Wang, X., Wu, D., Yi, K., and Zhao, Y. “Yunnan Baiyao-loaded multifunctional microneedle patches for rapid hemostasis and cutaneous wound healing”, J. Nanobiotechno-logy, vol. 21, no. 1, pp. 1–15, 2023, doi: 10.1186/s12951-023-01936-w.

Habib, R., Azad, A. K., Akhlaq, M., Al-Joufi, F. A., Shahnaz, G., Mohamed, H. R., Naeem, M., Almalki, A. S., Asghar, J., Jalil, A., and Abdel-Daim, M. M. “Thiolated Chitosan Microneedle Patch of Levosulpiride from Enhancement Approach”, 2022.

Zhu, T., Yu, X., Yi, X., Guo, X., Li, L., Hao, Y., and Wang, W. “Lidocaine-Loaded Hyaluronic Acid Adhesive Microneedle Patch for Oral Mucosal Topical Anesthesia”, Pharmaceutics, vol. 14, no. 4, pp. 1–15, 2022, doi: 10.3390/pharmaceutics14040686.

Wang, H., Zhao, Z., Wu, C., Tong, X., Shi, Y., and Chen, S. “Microneedle Patch Delivery of Methotrexate-Loaded Albumin Nanoparticles to Immune Cells Achieves a Potent Antipsoriatic Effect”, Int. J. Nanomedicine, vol. 17, no. August, pp. 3841–3851, 2022, doi: 10.2147/IJN.S371183.

Li, S., Wang, X., Yan, Z., Wang, T., Chen, Z., Song, H., and Zheng, Y. “Microneedle Patches with Antimicrobial and Immunomodulating Proper-ties for Infected Wound Healing”, Adv. Sci., vol. 10, no. 22, pp. 1–12, 2023, doi: 10.1002/advs.202300576.

Paredes, A. J., Volpe-Zanutto, F., Vora, L. K., Tekko, I. A., Permana, A. D., Picco, C. J., McCarthy, H. O., and Donnelly, R. F. “Systemic delivery of tenofovir alafenamide using dissolving and implantable microneedle patches”, Mater. Today Bio, vol. 13, no. December 2021, p. 100217, 2022, doi: 10.1016/j.mtbio.2022.10 0217.

Li, W., Chen, J. Y., Terry, R. N., Tang, J., Romanyuk, A., Schwendeman, S. P., and Prausnitz, M. R. “Core-shell microneedle patch for six-month controlled-release contraceptive delivery”, J. Control. Release, vol. 347, pp. 489–499, 2022, doi: 10.1016/j.jconrel.2022.04 .051.

Zhu, J., Zhou, X., Kim, H. J., Qu, M., Jiang, X., Lee, K., Ren, L., Wu, Q., Wang, C., Zhu, X., and Tebon, P. “Gelatin Methacryloyl Micronee-dle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid”, Small, vol. 16, no. 16, pp. 1–9, 2020, doi: 10.1002/smll.201905 910.

Takeuchi, K., Takama, N., Kim, B., Sharma, K., Paul, O., and Ruther, P. “Microfluidic chip to interface porous microneedles for ISF collection”, Biomed. Microdevices, vol. 21, no. 1, pp. 1–10, 2019, doi: 10.1007/s10544-019-0370-4.

Miller, P. R., Taylor, R. M., Tran, B. Q., Boyd, G., Glaros, T., Chavez, V. H., Krishnakumar, R., Sinha, A., Poorey, K., Williams, K. P., and Branda, S. S. “Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles”, Commun. Biol., vol. 1, no. 1, 2018, doi: 10.1038/s42003-018-0170-z.

Chen, J., Wang, M., Ye, Y., Yang, Z., Ruan, Z., and Jin, N. “Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis”, Biomed. Microdevices, vol. 21, no. 3, 2019, doi: 10.1007/s10544-019-0413-x.

Kolluru, C., Gupta, R., Jiang, Q., Williams, M., Gholami Derami, H., Cao, S., Noel, R. K., Singamaneni, S., and Prausnitz, M. R. “Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid”, ACS Sensors, vol. 4, no. 6, pp. 1569–1576, 2019, doi: 10.1021/acssensors.9b00258.

Zhang, X., Wang, Z., Jiang, H., Zeng, H., An, N., Liu, B., Sun, L., and Fan, Z. “Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds”, Sci. Adv., vol. 9, no. 28, pp. 1–13, 2023, doi: 10.1126/sciadv.adh1415.

Liu, J. F., GhavamiNejad, A., Lu, B., Mirzaie, S., Samarikhalaj, M., Giacca, A., and Wu, X. Y. “Smart’ Matrix Microneedle Patch Made of Self-Crosslinkable and Multifunctional Polymers for Delivering Insulin On-Demand”, Adv. Sci., vol. 10, no. 30, pp. 1–10, 2023, doi: 10.1002/advs.202303665.

Zhou, X., Li, B., Guo, M., Peng, W., Wang, D., Guo, Q., Wang, S., Ming, D., and Zheng. B. “Microneedle patch based on molecular motor as a spatio-temporal controll-able dosing strategy of L-DOPA for Parkinson’s disease”, Chem. Eng. J., vol. 427, no. April 2021, 2022, doi: 10.1016/j.cej.202 1.131555.

Moon, S. S., Richter-Roche, M., Resch, T. K., Wang, Y., Foytich, K. R., Wang, H., Mainou, B. A., Pewin, W., Lee, J., Henry, S., and McAllister, D. V. “Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine”, npj Vaccines, vol. 7, no. 1, 2022, doi: 10.1038/s41541-022-00443-7.

Fang, A., Wang, Y., Guan, N., Zuo, Y., Lin, L., Guo, B., Mo, A., Wu, Y., Lin, X., Cai, W., and Chen, X. “Porous microneedle patch with sustained delivery of extracellular vesicles mitigates severe spinal cord injury”, Nat. Commun., vol. 14, no. 1, pp. 1–17, 2023, doi: 10.1038/s41467-023-39745-2.

Yang, B., Kong, J., and Fang, X. “Programma-ble CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA”, Nat. Commun., vol. 13, no. 1, pp. 1–16, 2022, doi: 10.1038/s41467-022-31740-3.

Jiang, X., and Lillehoj, P. B. “Microneedle-based skin patch for blood-free rapid diagnostic testing”, Microsystems Nanoeng., vol. 6, no. 1, pp. 1–11, 2020, doi: 10.1038/s41378-020-00206-1.

Connelly, D. “Microneedles: a new way to deliver vaccines”, Pharm. J., vol. 307, no. 7953, 2021, doi: 10.1211/PJ.2021.1.100134.

Dugam, S., Tade, R., Dhole, R., and Nangare, S. “Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives”, Futur. J. Pharm. Sci., vol. 7, no. 1, pp. 1–26, 2021, doi: 10.1186/s43094-020-00176-1.

Makvandi, P., Jamaledin, R., Chen, G., Baghbantaraghdari, Z., Zare, E. N., Di Natale, C., Onesto, V., Vecchione, R., Lee, J., Tay, F. R., and Netti, P. “Stimuli-responsive transdermal microneedle patches”, Mater. Today, vol. 47, no. August, pp. 206–222, 2021, doi: 10.1016/j.mattod.2021.03.012.






Chemical, Industrial, Materials, Mechanical, Metallurgical, Petroleum & Production Engineering

How to Cite

POLYMERIC MICRONEEDLE ARRAYS FOR TRANSDERMAL RAPID DIAGNOSTIC TESTS AND DRUG DELIVERY: A REVIEW. (2024). Nigerian Journal of Technology, 43(2). https://doi.org/10.4314/njt.v43i2.11