CHEMICAL VAPOUR DEPOSITION (CVD) AND PHYSICAL VAPOUR DEPOSITION (PVD) TECHNIQUES: ADVANCES IN THIN FILM SOLAR CELLS

Authors

  • A. E. Adeoye Department of Physics and SLT, First Technical University, Ibadan, Nigeria
  • O. A. Adeage Department of Mechanical and Mechatronics Engineering, First Technical University, Ibadan, Nigeria
  • K. Ukoba Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

DOI:

https://doi.org/10.4314/njt.v43i3.10

Keywords:

Thin-film solar cells,, silicon solar cell., Sputtering, Chemical vapor deposition (CVD), atomic layer deposition (ALD

Abstract

Thin film solar cells are gaining popularity as an affordable, efficient, and flexible substitute for  traditional silicon solar cells . This success is closely tied to the deposition techniques used to fabricate their layers. This  review explores and analyzes the advances in the major deposition techniques for solar cell applications, offering insights into their underlying principles, associated advantages, drawbacks, and suitability for diverse materials and device architectures. The two primary deposition for thin film solar cells are PVD and CVD. In PVC materials are physically ejecting from a target, and depositing it onto a substrate. While, CVD entails the reaction of gases or vapour precursors to creating film on a substrate. The ability to achieve high purity, control over film properties, scalability, and compatibility with flexible substrates are notable advantages. However, challenges such as high costs and complexity can impact the commercial viability of certain techniques. Recent advancements in the technology of thin film deposition for solar cells include the discovery of novel materials with enhanced light absorption and electronic charge transport capabilities, emerging deposition processes such as pulsed laser deposition, and atomic layer deposition scalable and low-cost processes like roll-to-roll processing, and integration with other technologies like perovskite solar cells and tandem devices. Understanding these techniques and staying informed about recent advancements and future directions empowers researchers and engineers to innovate and create improved thin film solar cells, contributing significantly to a more sustainable future through enhanced solar energy harvesting technologies.

References

[1] Ali E. B., Anufriev V. P., and Amfo B. “Green economy implementation in Ghana as a road map for a sustainable development drive: A review” Scientific African, 2021, 12, e00756. doi.org/10.1016/j.sciaf.2021.e00756

[2] Sharma V. K., Singh R., Gehlot A., Buddhi D., Braccio S., Priyadarshi N., and Khan, B. “Imperative role of photovoltaic and concentrating solar power technologies towards renewable energy generation” International Journal of Photoenergy, 2022, 2, https://doi.o rg/10.1155/2022/3852484

[3] Owoeye A.V., Ajenifuja E., Adeoye A. E., Popoola A.P. “Microstructural and optical properties of Ni-doped ZnO thin films prepared by chemical spray pyrolysis technique” Materials Research Express, 2019, 6(8):1-8, DOI: 10.1088/2053-1591/ab26d9.

[4] Liu G., Sheng Y., Ager J. W., Kraft M., and Xu R. “Research advances towards large-scale solar hydrogen production from water”, EnergyChem: 2019, 1(2), 100014. https://doi.o rg/10.1016/j.enchem.2019.100014

[5] Grubert E., and Zacarias M. “Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs”, Renewable and Sustainable Energy Reviews, 2022, 159, 112208. https://d oi.org/10.1016/j.rser.2022.112208

[6] Hossain E. “The Sun and the Earth”, In The Sun, Energy, and Climate Change (pp. 1-67). Cham: Springer Nature Switzerland. 2023

[7] Adeaga O. A., Dare A. A., Odunfa K. M., and Ohunakin O. S., "Modeling of solar drying economics using Life Cycle Savings (LCS) method, " Journal of Power and Energy Engineering, 2015, 3(08), 55.

[8] Han T. Highly active and efficient metal-decorated silicon-based nanostructured photoelectrodes for water splitting solar cells. Ph.D. thesis, Universitat De BArcelona, 2020.

[9] Ramanujam J., Bishop D. M., Todorov T. K., Gunawan O., Rath J., Nekovei R., and Romeo A. “Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review” Progress in Materials Science: 2020, 110, 100619. DOI: 10.1016/j.pmatsci.2019.100619

[10] Li J., Sun K., Yuan X., Huang J., Green M. A., and Hao X. “Emergence of flexible kesterite solar cells: progress and perspectives”, npj Flexible Electronics: 2023, 7(1), 16. DOI: 10.1038/s41528-023-00250-7

[11] Alkhalayfeh M. A., Aziz A. A., and Pakhuruddin M. Z. “An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles”, Renewable and Sustainable Energy Reviews, 2021, 141, 110726. https://do i.org/10.1016/j.rser.2021.110726

[12] Nordin N. A., Ansari M. N. M., Nomanbhay S. M., Hamid N. A., Tan N. M., Yahya Z., And Abdullah, I. “Integrating photovoltaic (PV) solar cells and supercapacitors for sustainable energy devices: a review”, Energies: 2021, 14(21), 7211. doi:10.3390/en14217211

[13] Chen C., Zheng S., and Song H. “Photon management to reduce energy loss in perovskite solar cells”, Chemical Society Reviews, 2021, 50(12), 7250-7329. Doi: 10.1039/D0CS01488 E

[14] Trommsdorff M., Dhal I. S., Özdemir Ö. E., Ketzer D., Weinberger N., And Rösch, C. “Agrivoltaics: Solar power generation and food production” In Solar Energy Advancements in Agriculture and Food Production Systems: 2022, 159-210. Doi: 10.1016/B978-0-323-898 66-9.00012-2

[15] Aydin E., Altinkaya C., Smirnov Y., Yaqin M. A., Zanoni K. P., Paliwal A., and De Wolf S. Sputtered transparent electrodes for optoelectr-onic devices: Induced damage and mitigation strategies. Matter: 2021, 4(11), 3549-3584. https://doi.org/10.1016/j.matt.2021.09.021

[16] Fraser R., and Girtan M. A, “Selective Review of Ceramic, Glass and Glass–Ceramic Protective Coatings: General Properties and Specific Characteristics for Solar Cell Applications”, Materials, 2023, 16(11), 3906. doi:10.3390/ma16113906

[17] Deng Y., Chen W., Li B., Wang C., Kuang T., and Li Y. “Physical Vapourdeposition technology for coated cutting tools: A review”, Ceramics International, 2020, 46(11). Doi: 10.1016/j.ceramint.2020.04.168

[18] Bello M., and Shanmugan S. “Achievements in mid and high-temperature selective absorber coatings by physical Vapourdeposition (PVD) for solar thermal Application: A review” Journal of Alloys and Compounds: 2020, 839, 155510. https://doi.org/10.1016/j.jallcom.2020 .155510

[19] Mondal, A.K., Ping, L.K., Haniff, M.A.S.M., Bahru, R., and Mohamed, M.A.: ‘Recent Advancements in α‐Ga2O3 Thin Film Growth for Power Semiconductor Devices via Mist CVD Method: A Comprehensive Review’, Crystal Research and Technology, 2024, 59, (3), pp. 2300311

[20] Nimalan, T., and Begam, M.: ‘Physical and Chemical Methods: A Review on the Analysis of Deposition Parameters of Thin Film Preparation Methods’, Int. J. Thin. Fil. Sci. Tec, 2024, 13, (1), pp. 59-66

[21] Xia, Y., Ding, P., Zhao, J., Yin, B., and Shi, X.: ‘Thin Film Growth Equipment’: ‘Handbook of Integrated Circuit Industry’ (Springer, 2023), pp. 1383-1439

[22] Ashok A., Regmi G., Romero-Núñez A., Solis-López M., Velumani S., And Castaneda H. “Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications”, Journal of Materials Science: materials in Electronics, 2020, 31, 7499-7518. Doi: 10.1007/s10854-020-03024-3

[23] Ibrahim M. S. Mohammed, Ghamdan M. M. Gubari, Nanasaheb P. Huse, Avinash S. Dive, Sung-Hwan Han, and Ramphal Sharma. “Effect of Cd/S ratio on growth and physical properties of CdS thin films for photosensor application”, Journal of Materials Science: Materials in Electronics: 2020, 31, 9989-9996. DOI: 10.1007/s10854-020-03543-z.

[24] Sengupta S., Aggarwal R., and Raula M. “A review on chemical bath deposition of metal chalcogenide thin films for heterojunction solar cells”, Journal of Materials Research: 2023, 38(1), 142-153. https://doi.org/10.1557/s43578 -022-00539-9

[25] Fasasi A. Y., Ajenifuja. E, Osagie E., Animashaun L., Adeoye A.E., and Obiajunwa E. “Optical, Dielectric and Optoelectronic Properties of Spray Deposited Cu-doped Fe2O3 Thin Films”, J. Nig.Soc. Phys. Sci., 2023, 5,1180. DOI: 10.46481/jnsps.2023.1180

[26] Mane, R.S., Jadhav, V., and Al-Enizi, A.M.: ‘Solution Methods for Metal Oxide Nanostructures’ (Elsevier, 2023. 2023)

[27] Song N., Deng S. “Thin Film Deposition Technologies and Application in Photovoltaics” IntechOpen, 2023. http://dx.doi .org/10.5772/intechopen.108026

[28] Ogunmola E. D., Adeoye A.E., Ajenifuja E. And Taleatu B. A., “Optical, Electrical and Microstructural Characterizations of TiO2 Thin Films Prepared from Metal-Organic Liquid Precursor at Different Deposition Temperat-ure”, FUW Trend in Sci. & Tech Journal, 2017, 3 (1):43-46.

[29] Basova, T. V., Hassan, A., and Morozova, N. B. “Chemistry of gold (I, III) complexes with organic ligands as potential MOCVD precursors for fabrication of thin metallic films and nanoparticles”. Coordination Chemistry Reviews: 2019, 380, 58-82. https://doi.org/10. 1016/j.ccr.2018.09.005

[30] Liu Y., Rath B., Tingart M., and Eschweiler J. “Role of implants surface modification in osseointegration: A systematic review”, Journal of Biomedical Materials Research Part A: 2020, 108(3), 470-484. DOI : 10.1002/jbm.a .36829

[31] Rodríguez-Martínez X., Pascual-San-José E., and Campoy-Quiles, M. “Accelerating Organic Solar Cell Material's Discovery: High-throughput Screening and Big Data”, Energy & Environmental Science: 2021, 14(6), 3301-3322. https://doi.org/10.1039/D1EE00559F

[32] Lo Presti F., Pellegrino A. L., and Malandrino G. “Metal‐organic chemical Vapourdeposition of oxide perovskite films: a facile route to complex functional systems”, Advanced Materials Interfaces, 2022, 9(14), 2102501. https://doi.org/10.1002/admi.202102501

[33] Moumen A., Kumarage G. C., and Comini E. “P-type metal oxide semiconductor thin films: synthesis and chemical sensor application-ns. Sensors”, 2022, 22(4), 1359. https://doi.or g/10.3390/s22041359

[34] Karakovskaya K. I., Dorovskikh S. I., Vikulova E. S., Ilyin I. Y., Zherikova K. V., Basova T. V., and Morozova N. B. “Volatile iridium and platinum MOCVD precursors: Chemistry, thermal properties, materials and prospects for their application in medicine”, Coatings, 2021, 11(1), 78. https://doi.org/10.3390/coatings110 10078

[35] Lee T. Y., Chen L. Y., Lo Y. Y., Swayamprabha S. S., Kumar A., Huang Y. M., and Kuo H. C. “Technology and applications of micro-LEDs: their characteristics, fabrication, advancement, and challenges”, ACS Photon-ics, 2022, 9(9), 2905-2930.

[36] Jiang Y., and Qi Y. “Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technolo-gy”, Materials Chemistry Frontiers, 2021, 5(13), 4833-4850. Doi: 10.1039/D1QM00279 A

[37] Butt M. A. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness: A brief exploration. Coatings, 2022, 12(8), 1115. https://doi.org/10.3390/coati ngs12081115

[38] Adeoye A. E., Ajenifuja E., Alayande S.O., Ogunmola E. D., and Fasasi A. Y. “Effect of Zn doping concentration on optical and photovo-ltaic performance properties of Zn-PbS Thin Film Solar Cell”, SN Applied Sciences, 2020 2(9):1560. doi:10.1007/s42452-020-03348-z

[39] Chaudhari M. N., Ahirrao R. B., and Bagul S. D. “Thin film deposition methods: A critical review”, International Journal for Research in Applied Science & Engineering, 2021, 9, 5215-5232. DOI:10.22214/ijraset.2021.36154

[40] Shi Y., Groven B., Serron J., Wu X., Nalin Mehta A., Minj A., and Caymax M. “Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS nano, 2021, 15(6), 9482-9494. Doi:10.1021/acsnano.0c077 61

[41] Swartwout R., Hoerantner M. T., and Bulović V. “Scalable deposition methods for large‐area production of perovskite thin films”, Energy & Environmental Materials, 2019, 2(2), 119-145. https://doi.org/10.1002/eem2.12043

[42] Hashemi, S. A., Ramakrishna, S., and Aberle, A. G., “Recent progress in flexible–wearable solar cells for self-powered electronic devices”, Energy & Environmental Science, 2020, 13(3), 685-743. Doi: 10.1039/C9EE03046H

[43] Subudhi P., and Punetha D. “Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review”, Progress in Photovoltaics: Research and Applications, 2023, 31(8), 753-789. https://doi.org/10.1002/ pip.3703

[44] Mun J., Park H., Park J., Joung D., Lee S. K., Leem J., and Kang S. W., “High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal–organic chemical Vapourdeposition”, ACS Applied Electronic Materials, 2019, 1(4), 608-616. DOI:10.1021 /acsaelm.9b00078

[45] Mbam S. O., Nwonu S. E., Orelaja O. A., Nwigwe U. S., and Gou X. F. “Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/ nano-level measurement/models and prospects projection: A critical review”, Materials Research Express, 2019, 6(12). DOI:10.1088 /2053-1591/ab52cd

[46] Efaz E. T., Rhaman M. M., Al Imam S., Bashar K. L., Kabir F., Mourtaza M. E., And Mozahid A. F. “A review of primary technologies of thin-film solar cells”, Engineering Research Express, 2021, 3(3), 032001. Doi: 2021ERExp ...3c2001E

[47] Sivagurunathan A. T., Adhikari S., and Kim D. H. “Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects”, Nano Energy, 2021, 83, 105802. DOI:10.1016/j.nan oen.2021.105802

[48] Lu X, Fan X, Zhang H, Xu Q, Ijaz M. Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition. Inorganics. 2024; 12(5):128. https://doi.org/10.3390/inorganics1 2050128

[49] Dong S., Jiao H., Wang Z., Zhang J., and Cheng, X. Interface and defects engineering for multilayer laser coatings. Progress in Surface Science, 2022, 97(3), 100663. DOI: 10.1016/j .progsurf.2022.100663

[50] Kim Y. Y., Yang T. Y., Suhonen R., Kemppainen A., Hwang, K., Jeon, N. J., And Seo J. “Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window”, Nature communications, 2022, 11(1), 5146. https://doi.org/10.1038/s41467-020-18940-5

[51] Gusain A., Thankappan A., and Thomas, S., Roll-to-roll printing of polymer and perovskite solar cells: compatible materials and processes. Journal of Materials Science, 2020, 55, 13490-13542. DOI:10.1007/s10853-020-04883-1

[52] Bhattarai, S., Hossain, M. K., Pandey, R., Madan, J., Samajdar, D., Rahman, M.F., Ansari, M. Z., and Amami, M.: ‘Perovskite solar cells with dual light absorber layers for performance efficiency exceeding 30%’, Energy & Fuels, 2023, 37, (14), pp. 10631-10641

[53] Roy P., Ghosh A., Barclay F., Khare A., and Cuce, E. “Perovskite solar cells: a review of the recent advances”, Coatings, 2022, 12(8), 1089. https://doi.org/10.3390/coatings12081089

[54] Mishra S., Ghosh S., And Singh T. “Progress in materials development for flexible perovskite solar cells and future prospects”, Chem. Sus. Chem, 2021, 14(2), 512-538. https://doi.org/10 .1002/cssc.202002095

[55] Zhou J., Huang Q., Ding Y., Hou G., and Zhao, Y. “Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture”, Nano Energy, 2022, 92, 106712. DOI:10.1016/j.nanoen.2021.1067 12

[56] Boschloo, G. “Can Alternative Module Design Help to Overcome Stability Problems of Perovskite Photovoltaics?”, ACS Energy Letters, 2023, 8(2), 1147-1151. DOI: 10.1021/ acsenergylett.2c02841

Downloads

Published

2024-09-20

Issue

Section

Chemical, Industrial, Materials, Mechanical, Metallurgical, Petroleum & Production Engineering

How to Cite

CHEMICAL VAPOUR DEPOSITION (CVD) AND PHYSICAL VAPOUR DEPOSITION (PVD) TECHNIQUES: ADVANCES IN THIN FILM SOLAR CELLS. (2024). Nigerian Journal of Technology, 43(3). https://doi.org/10.4314/njt.v43i3.10