SOLUTION OF FREE HARMONIC VIBRATION EQUATION OF SIMPLY SUPPORTED KIRCHHOFF PLATE BY GALERKIN-VLASOV METHOD
DOI:
https://doi.org/10.4314/njt.362.1282Keywords:
Kirchhoff plate, Galerkin-Vlasov method, harmonic vibration, natural vibrations, eigen frequencies.Abstract
This work studies the dynamic characteristics of simply supported rectangular thin plates undergoing natural transverse vibrations in harmonic motion. The governing partial differential equation for the free transverse vibration of the plate was solved by the Galerkin-Vlasov variational technique. The assumption of free harmonic motions reduced the governing equation to an algebraic eigen value eigenvector problem, which was solved in the space domain to obtain the eigen frequencies and modal shape functions of the vibrating Kirchhoff plate. The eigen frequencies and modal shape functions obtained were found to be identical with the results obtained by the classical methods of Navier and Levy for the same problem.
Downloads
Published
Issue
Section
License
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.