SUSTAINABLE FAECAL SLUDGE MANAGEMENT IN INTERNALLY DISPLACED PERSONS (IDPS) SETTLEMENTS IN TROPICAL CLIMATE: A REVIEW
DOI:
https://doi.org/10.4314/njt.v43i1.19Keywords:
Sustainable development, environment, Sustainable faecal sludge management, Internally displaced persons, Tropical climate, SettlementAbstract
In settlements for internally displaced persons (IDPs), achieving sustainable on-site faecal sludge management is crucial. Effective stabilization and treatment methods are vital, as the wrong choices can result in dire sanitary conditions. Tropical climate, marked by low-income settings and overburdened sanitation facilities, pose unique challenges that demand tailored solutions. This review paper focuses on simplicity, cost-efficiency, and minimal land requirements for stabilization, along with affordability, low health risks, and valuable end-products for treatment. Notable findings include mechanical presses, planted drying beds, and solar greenhouse drying beds as robust stabilization methods, while microwave heating, black soldier fly larvae, and anaerobic digestion show promise as sustainable treatment techniques. Adopting these techniques promises sustainable faecal sludge management and potential improvements in living standards. This paper guides the way toward enhanced sanitation and well-being in the toughest conditions.
References
United Nations High Commission for Refugees “Global Trends Forced Displacement in 2021”, 2021. Available online: https://www.unrefuge es.org/news/five-takeaways-from-the-2021-un hcr-global-trends-report/ (accessed October 12, 2022).
Brown, O. “Migration and climate change”, IOM migration research series, 31, 7; 2008. International Organization for Migration.
Lehne, J., Blyth, W., Lahn, G., Bazilian, M., and Grafham, O. “Energy services for refugees and displaced people”, Energy Strategy Reviews, 13-14; 2016, 134e146
Miliband, D., and Tessema, M. T. “The unmet needs of refugees and internally displaced people”, The Lancet, 392(10164), 2018; 2530–2532. https://doi.org/10.1016/S0140-6736(18) 32780-6
Cooper, B., Behnke, N. L., Cronk, R., Anthonj, C., Shackelford, B. B., Tu, R., and Bartram, J. “Environmental health conditions in the transitional stage of forcible displacement: A systematic scoping review”, Science of the Total Environment, 2020; 762, 143136. https://doi.org/10.1016/j.scitotenv.2020.143136
Akhter, M., Uddin, S. M. N., Rafa, N., Hridi, S. M., Staddon, C., and Powell, W. “Drinking water security challenges in Rohingya refugee camps of cox’s bazar”, Bangladesh. Sustainability, 12(18), 2020; 7325
UN-Habitat and WHO “Progress on Wastewater Treatment - Global Status and Acceleration Needs for SDG Indicator 6.3.1”, United Nations Human Settlements Programme (UN-habitat) and World Health Organization, WHO), Geneva, 2021.
UNICEF and WHO “Progress on Drinking-Water sanitation and hygiene in Schools: 2000-2001 Data”, 2021, Available online: https://data.unicef.org/resources/jmp-wash-in-schools-2022/ ( accessed October 12, 2022).
Eliyan, C., McConville, J. R., Zurbrügg, C., Koottatep, T., Sothea, K., and Vinnerås, B. “Generation and Management of Faecal Sludge Quantities and Potential for Resource Recovery in Phnom Penh, Cambodia”, Frontiers in Environmental Science, 10, 869009, 2022; doi: 10.3389/fenvs.2022.869009.
Penn, R., Ward, B. J., Strande, L., and Maurer, M. “Review of synthetic human faeces and faecal sludge for sanitation and wastewater research”, Water Research, 132, 2018; 222–240. doi:10.1016/j.watres.2017.12.06
Manga, M., Camargo-Valero, M. A., Anthonj, C., and Evans, B. E. “Fate of faecal pathogen indicators during faecal sludge composting with different bulking agents in tropical climate”, International Journal of Hygiene and Environmental Health, 2021; 232, 113670. doi:10.1016/j.ijheh.2020.113670
Seleman, A., Gabrielsson, S., and Kimwaga, R. “Faecal sludge containment characteristics and their implications on safe desludging in unplanned settlements of Dar es Salaam, Tanzania”, Journal of Environmental Management, 2021; 295, 112924
Singh, S., Mohan, R. R., Rathi, S., and Raju, N. J. “Technology Options for Faecal Sludge Management in Developing Countries: Benefits and Revenue from Reuse. Environme-ntal Technology and Innovation, 2017; 7, 203–218. doi:10.1016/j.eti.2017.02.004
Bastable, A., and Lamb, J. “Innovative designs and approaches in sanitation when responding to challenging and complex humanitarian contexts in urban areas”, Waterlines, 2012; 31, 67-82
Connolly, M. A., Gayer, M., Ryan, M. J., Salama, P., Spiegel, P., and Heymann, D. L. “Communicable diseases in complex emergen-cies: Impact and challenges”, The Lancet, 2004; 364(9449), 1974–1983. https://doi.org/10.101 6/S0140-6736(04)17481-3
Ali, H., Khan, E., and Ilahi, I. “Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation”, Journal of Chemistry, 2019; 14.
Orugba, H. O., Ogbeide, S. E., and Osagie, C. “Emission Trading Scheme and the Effect of Carbon Fee on Petroleum Refineries”, Asian Journal of Applied Sciences, 2019a; 7(5), 31-41. https://doi.org/10.4236/msce.2019.711004
Orugba, H. O., Ogbeide, S. E., and Osagie, C. “Risk level Assessment of the Desalter and Preflash Column of a Nigerian Crude Distillation Unit”, Journal of Materials Science and Chemical Engineering, 2019b; 7, 31 41.
Nsiah-Gyambibi, R., Essandoh, H. M. K., and Asiedu, N. Y. “Valorization of fecal sludge stabilization via vermicomposting in microcosm enriched substrates using organic soils for vermicompost production”, Heliyon7, e06422; 2021.
Zewde, A. A., Li, Z., and Xiaoqin, Z. “Improved and Promising Fecal Sludge Sanitizing Methods: Treatment of Fecal Sludge Using Resource Recovery Technologies”, Journal of Water Sanitation and Hygiene for Development, 2021; 11 (3), 335–349.
WHO. “Sanitaion”, 2022; Available online: https://www.who.int/news-room/fact-sheets/de tail/sanitation. (accessed October 12, 2022)
Rose, C., Parker, A., Jefferson, B., and Cartmell, E. “The characterization of feces and urine: a review of the literature to inform advanced treatment technology”, “Critical Review in Environmental Science and Technology”, 45, 1827-1879; 2015.
Onabanjo, T., Kolios, A. J., Patchigolla, K., Wagland, S. T., Fidalgo, B., Jurado, N., and Cartmell, E. “An experimental investigation of the combustion performance of human faeces”, Fuel, 2016a; 184, 780-791. https://doi.org/10. 1016/j.fuel.2016.07.077.
Strande, L., Schoebitz, L., Bischo, F., Ddiba, D., Okello, F., Englund, M., Ward, B. J., and Niwagaba, C. B. “Methods to reliably estimate faecal sludge quantities and qualities for the design of treatment technologies and management solutions”, Journal of Environme-ntal Management, 2018; 223, 898–907.
Aluko, O. O., Oloruntoba, E. O., Ana, G. R. E. E., Hammed, T. B., and Afolabi, O. International Journal of Recycling of Organic Waste in Agriculture, 2020; 9, 333-347
Wanda, C., Kengne, E. S., Wafo, G. V. D., Nzouebet, W. A. L., Nbendah, P., Ngandjui, W.A.L., Nbendah, P., Ngandjui, Y. A. T., Zapfack, L., and Noumsi, I. M. K. “Quantification and characterisation of faecal sludge from on-site sanitation systems prior the design of a treatment plant in Bangangte, West Region of Cameroon” Environmental Challen-ges, 2021; 5, 100236. doi:10.1016/j.envc.2021. 100236
Mawioo, P. M., Hooijmans, C. M., Garcia, H. A., and Brdjanovic, D. “Microwave treatment of faecal sludge from intensively used toilets in the slums of Nairobi, Kenya”, Journal of Environmental Management, 2016a; 184, 575e584
Yacob, T. W., Fisher, R., Linden, K. G and Weimer, A.W. “Pyrolysis of human feces: Gas yield analysis and kinetic modeling”, Waste Management, 2018; 79, 214–222
Bleuler, M., Gold, M., Strande, L., and Schönborn, A. “Pyrolysis of Dry Toilet Substrate as a Means of Nutrient Recycling in Agricultural Systems: Potential Risks and Benefits”, Waste and Biomass Valorization, 2020; 12(7), 4171–4183. doi:10.1007/s12649-020-01220-0
Vali, N., Åmand, L.-E., Combres, A., Richards, T., and Pettersson, A. “Pyrolysis of Municipal Sewage Sludge to Investigate Char and Phosphorous Yield together with Heavy-Metal Removal Experimental and by Thermodynamic Calculations”, Energies, 2021; 14, 1477.
Onabanjo, T., Patchigolla, K., Wagland, S. T., Fidalgo, B., Kolios, A., McAdam, E., Parker, A., Williams, L., Tyrrel, S., and Cartmell, E. “Energy recovery from human faeces via gasification: A thermodynamic equilibrium modelling approach”, Energy Conversion and Management, 2016b; 118, 364–376. doi:10.101 6/j.enconman.2016.04.
Ward, B. J., Traber, J., Gueye, A., Diop, B., Morgenroth, E., and Strande, L. “Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania”, Water Research, 2019; 167, 115101. doi:10.1016/j.watres.2019.11510.
Ahmed, M. J., and Hameed, B. H. “Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: a review”, “Journal of Cleaner Production”, 2020; 265, 121762. https:/ /doi.org/10.1016/j. jclepro.2020.121762.
Rhodes-Dicker, L., Ward, B. J., Mwalugongo, W., and Stradley, L. “Permeable membrane dewatering of faecal sludge from pit latrines at a transfer station in Nairobi, Kenya”, Environmental Technology, 2021; 1–12. doi:10 .1080/09593330.2020.18705
WHO “Guidelines on Sanitation and Health. World Health Organization, Geneva”, 2018; Available online: http://www.who.int/ water_sa nitation_health/publications/guidelines-onsanit ation-and-health/en/. (accessed November 10, 2022)
Mawioo, P. M., Rweyemamu, A., Garcia, H. A., Hooijmans, C. M., and Brdjanovic, D. “Evaluation of a microwave-based reactor for the treatment of blackwater sludge”, Science of the Total Environment, 2016b; 548-549.
Samal, K., Moulick, S., Mohapatra, B. G., Samanta, S., Sasidharan, S., Prakash, B., and Sarangi, S. “Design of Faecal sludge treatment plant (FSTP) and availability of its treatment technologies”, Energy Nexus, 2022; 7, 1000091
Callegari A, Capodaglio. “Properties and Beneficial Uses of (Bio) Chars, with Special Attention to Products from Sewage Sludge Pyrolysis”, Resources, 2018; 7(1), 20. doi:10.3390/resources7010020
Gold, M., Harada, H., Therrien, J. D., Nishida, T., Cunningham, M., Semiyaga, S., Fujii, S., Dorea, C., Nguyen, V. A., and Strande, L. “Cross-country analysis of faecal sludge dewatering”, Environmental Technology, 2018; 39(23), 3077–3087.
Mercer, E., Usher, S. P., McAdam, E. J., Stoner, B., and Bajón-Fernández, Y. “On the compressional rheology of fresh faeces: Evidence for improving community scale sanitation through localised dewatering”, Water Research, 2021; 204, 117526. doi:10.1016/j.w atres.2021.11752
Christensen, M. L., Keiding, K., Nielsen, P. H., and Jørgensen, M. K. “Dewatering in biological wastewater treatment: A review”, Water Research, 2015; 82, 14–24. doi:10.1016/j.wat res.2015.04.01
Basamykina, A., Kharlamova, M., and Mada, S. Y. “Dewatering as a primary treatment of faecal sludge in individual residential sector (a technologies review)”, E3S Web of Conference s, 2020; 169, 02008.
Gueye, A., Mbéguéré, M., Niang, S., Diop, C., and Strande, L. “Novel plant species for faecal sludge drying beds: Survival, biomass response and forage quality”, Ecological Engineering, 2016; 94, 617–621. doi:10.1016/j.ecoleng.2016 .05.0
Lindberg, E., and Rost, A. “Treatment of Faecal Sludge From Pit Latrines and Septic Tanks Using Lime and Urea Pathogendie-off with Respect to Time of Storage”, Master’s Thesis, Natural Resources Engineering, 2018; Luleå University of Technology.Luleå, Sweden.
Ziebell, F., Gold, M., Matovu, J., Maiteki, J., Niwagaba, C., and Strande, L. “Dewatering of faecalsludge with geotextiles: Results from laboratory and bench-scale experiments in Kampala, Uganda”, Swiss Federal Institute for Aquatic Science and Technology (Eawag), 2016; Dübendorf, Switzerland.
An-nori, A., Ezzariai, A., El Mejahed, K., El Fels, L., El Gharous, M., and Hafidi, M. “Solar Drying as an Eco-Friendly Technology for Sewage Sludge Stabilization: Assessment of Micropollutant Behavior, Pathogen Removal, and Agronomic Value”, Frontiers in Environmental Science, 2022; 10, 814590.doi: 10.3389/fenvs.2022.814590
Seck, A., Gold, M., Niang, S., Mbeguere, M., Diop, C., and Strande, L. “Faecal sludge drying beds: increasing drying rates for fuel resource recovery in Sub-Saharan Africa”, Journal of Water, Sanitation and Hygiene for Development, 2015; 5(1):72-80.
Wang, J., Gao, M., Wang, Q., Zhang, W., and Shirai, Y. “Pilot-scale open fermentation of food waste to produce lactic acid without inoculum addition”, RSC Advances 6, 2016; (Suppl. 106), 104354–104358.
UNICEF and WHO. “Progress On Sanitation and drinking-water: 2015 Update and MDG Assessment”, World Health Organization, 2015; Geneva, Switzerland.
Gachuri, W. G. “Optimising the utilisation of sawdust of eucalyptus tree species; a fuel for teaindustry”, Unpublished MSc Thesis University of Nairobi, 2015.
McKendry, P. “Energy production from biomass (part 1): Overview of biomass”, Bioresource Technology, 2002; 83, 37–46.
Wang, J., Wang, G., Zhang, M., Chen, M., Li, D., Min, F., Chen, M., Zhang, S., Ren, Z., and Yen, Y. “A comparative study of thermolysis characteristic and kinetics of seaweeds and fir-wood”, Process Biochemistry, 2006; 41, 1883–1886.
Fahmi, R., Bridgwater, A. V., Donnison, I., Yates, N., and Jones, J. M. “The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability”, Fuel, 2008; 87, 1230–1240.
Karaca, H., Depci, T., Karta, M., and Coskun, M. A. “Liquefaction Potential of Adiyaman Peat”, IOP Conference Series: Earth and Environmental Science, 2016; 44, 052050. doi:10.1088/1755-1315/44/5/052050
Bhattacharya, S. C., Alnina, D. O., and Salam, P. A. “Emission factors of wood and charcoal¬red cookstoves”, Biomass and Bioenergy, 2002; 23, 453–469
Kiyasudeen, S. K., bin Ibrahim, M. H., and Ismail, S. A. “Characterization of Fresh Cattle Wastes Using Proximate, Microbial and Spectroscopic Principles”, American-Eurasian Journal of Agriculture and Environmental Sciences, 2015; 15 (8), 1700-1709
Akyurek, Z. “Energy recovery from animal manure: Biogaspotential of Burdur, Turkey”, Eskisehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 2019; 20, 161-170.
Somorin, T. O., Kolios, A. J., Parker, A., McAdam, E., Williams, L., and Tyrrel, S. “Faecal-wood biomass co-combustion and ash composition analysis”, Fuel, 2017; 203, 781–791
Szymajda, A., Łaska, G., and Joka, M. “Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies”, Energies, 2021; 14, 1192.
Bhunia, S., Bhowmik, A., Mallick, R., and Debsarcar, A. “Application of recycled slaught-erhouse wastes as an organic fertilizer for successive cultivations of bell pepper and amaranth”, Scientia Horticulturea, 2021; 280, 109927
Zając, G., Szyszlak-Bargłowicz, J., and Szczepanik, M. “Influence of Biomass Incineration Temperature on the Content of Selected Heavy Metals in the Ash Used for Fertilizing Purposes”, Applied Sciences, 2019; 9(9), 1790.doi:10.3390/app9091790
Kasina, M., Wendorff-Belon, M., Kowalski, P. R., and Michalik, M. “Characterization of incineration residues from wastewater treatm-ent plant in Polish city: a future waste based source of valuable elements?”, Journal of Material Cycles and Waste Management, 2019; doi:10.1007/s10163-019-00845-1
Wang, P., Hu, Y., Cheng, H. (2019). Municipal solid waste (MSW) incineration fly ash as an important source ofheavy metal pollution in China. Environ. Pollution, 252, 461–475.
Boguniewicz-Zablocka, J., Klosok-Bazan, I., and Capodaglio, A. G. “Sustainable manageme-nt of biological solids in small treatment plants: overview of strategies and reuse options for a solar drying facility in Poland”, Environmental Science and Pollution Research, 2020; doi:10.1007/s11356-020-10200-9
Wyn, H. K., Konarova, M., Beltramini, J., Perkins, G., and Yermán, L. “Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery”, Fuel Processing Technology, 2020; 205, 106425.
Gianfelice, G., Della Zassa, M., Biasin, A., and Canu, P. “Onset and propagation of smouldering in pine bark controlled by addition of inert solids”, Renewable Energy, 2019; 132, 596–614.doi:10.1016/j.renene.2018.08.
Wall, H., Yerman, L., Gerhard, J., Fabris, I., Cormier, D., Cheng, Y.-L., and Torero, J. L. “Investigation of self-sustaining smouldering of faeces: key parameters and scaling effects”, In: Dynamic Ecolibrium: Sustainable Engineering Society Conference, 2019; (SENG
, 113 (2015)
Orugba, H. O., Chukwuneke, J. L., Olisakwe, H. C., and Digitemie, I. E. “Multi-parametric optimization of the catalytic pyrolysis of pig hair into bio-oil”, Clean Energy, 2021; 527–535, https://doi.org/10.1093/ce/zkab038
Chukwuneke, J. L., Orugba, H. O., Olisakwe, H. C., and Chikelu, P. O. “Pyrolysis of pig-hair in a fixed bed reactor: Physico-chemical parameters of bio-oil”, South African Journal of Chemical Engineering, 2021; 38, 115–120.
Chukwuneke, J. L., Sinebe, J. E., Orugba, H. O., Olisakwe, H. C., and Ajike, C. “Production and physico-chemical characteristics of pyrolyzed bio-oil derivedfrom cow hooves”, Arab Journal of Basic and Applied Sciences, 2022a; 29:1, 363-371
Chukwuneke, J. L., Sinebe, J. E., Orugba, H. O., and Ajike, C. “Process Optimization for Enhancing Yield and Quality of Bio-Oil from the Pyrolysis of Cow Hooves”, International Journal of Design and Nature and Ecodynamics, 2022b; 17(3), 453-461
O’Keeffe, S., and Thrän, D. “Energy crops in regional biogas systems: An integrative spatial LCA to assess the influence of crop mix and location on cultivation GHG emissions”, Sustainability, 2020; 12, 237
Zhang, W., Li, H., Tang, J., Lu, H., and Liu, Y. “Ginger straw waste-derived porous carbons as effective adsorbents toward methylene Blue”, Molecules, 2019; 24, 469.
Crombie, K., Mašek, O., Cross, A., and Sohi, S. “Biochar-synergies and trade-offs between soil enhancing properties and C sequestration potential”, GCB Bioenergy, 2015; 7, 1161–1175, https ://doi.org/10.1111/gcbb.12213
Hadroug, S., Jellali, S., Leahy, J. J., Kwapinska, M., Jeguirim, M., Hamdi, H., and Kwapinski, W. “Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities”, Water, 2019; 11(11), 2271.doi:10. 3390/w11112271
Dutta, T., Kwon, E., Bhattacharya, S. S., Jeon, B. H., Deep, A., Uchimiya, M., and Kim, K. H. “Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review”, Gcb Bioenergy, 2017; 9, 990–1004.
Afolabi, O. O. D., and Sohail, M. “Microwaving human faecal sludge as a viable sanitation technology option for treatment and value recovery – A critical review”, Journal of Environmental Management, 2017; 187, 401–415. doi:10.1016/j.jenvman.2016.10.067
Tyagi, V. K., and Lo, S.-L. “Microwave irradiation: a sustainable way for sludge treatment and resource recovery”, Renewable and Sustainable Energy Reviews, 2013; 18, 288-305.
Mengistu, T., Gebrekidan, H., Kibret, K., Woldetsadik, K., Shimelis, B., and Yadav, H. “Comparative effectiveness of different composting methods on the stabilization, maturation and sanitization of municipal organic solid wastes and dried faecal sludge mixtures”, Environmental Systems Research, 2017; 6(1). doi:10.1186/s40068-017-0079-4
Wang, H., Lim, T. T., Duong, C., Zhang,W., Xu, C., Yan, L., Mei, Z., and Wang, W. “Long-term mesophilic anaerobic co-digestion of swine manure with corn stover and microbial community analysis”, Microorganisms, 2020; 8,188.
Fabbri, D., and Torri, C. “Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass”, Current Opinion in Biotechnology, 2016; 38, 167–173. doi:10.1016 /j.copbio.2016.02.00
González, R., González, J., Rosas, J. G., Smith, R., and Gómez, X. “Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis”, Journal of Carbon Research, 2020; 6(2), 43. doi:10.339 0/c6020043
Guy, V. D. W., Pulcherie, M. N., Wilfried, A. Egravene, L. N., Pierre, F., Ccedilois D., and Ives, M. K. “Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.) Hitchc. Chase plant material from a constructed wetland system treating domestic wastewater in Cameroon”, African Journal of Environmental Science and Technology, 2016; 10(9), 272–282. doi:10.5897/ajest2016.2089
Nartey, E. G., Amoah, P., Ofosu-Budu, G. K., Muspratt, A., and Pradhan, S. kumar. “Effects of co-composting of faecal sludge and agricultural wastes on tomato transplant and growth”, International Journal of Recycling of Organic Waste in Agriculture, 2017; 6(1), 23–36. doi:10.1007/s40093-016-0149
Grau, F., Drechsel, N., Haering, V., Trautz, D., Weerakkody, W., Drechsel, P., Marschner, B., Dissanayake, D., and Sinnathamby, V. “Impact of Fecal Sludge and Municipal Solid Waste Co-Compost on Crop Growth of Raphanus Sativus L. and Capsicum Anuum L. under Stress Conditions”, Resources, 2017; 6(3), 26. doi:10 .3390/resources6030026
Swati, A., and Hait, S. “Fate and bioavailability of heavy metals during vermicomposting of various organic wastes: A review”, Process Safety and Environmental Protection, 2017; 109, 30–45.
Domínguez, J. and Edwards, C. A. “Biology and ecology of earthworm species used for vermicomposting”, Chapter 3:27-40. In: vermiculture technology. Earthworms, organic wastes, and environmental management. Edwards, C. A.; Arancon, N. Q. and Sherman, R. (Eds.). CRC Press. Taylor & Francis Group. Boca Raton, FL. 587 p. Dec. 2011a.
Ramnarain, Y. I., Ansari, A. A., and Ori, L. “Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida”, International Journal of Recycling Organic Waste in Agriculture, 2019; 8, 23–36.
Garczyn´ ska, M., Kostecka, J., Pa˛czka, G., Hajduk, E., Mazur-Pa˛czka, A., and Butt, K. R. “Properties of vermicomposts derived from Cameroon sheep dung”, Applied Science, 2020; 10, 5048
Amouei, A. I., Yousefi, Z., and Khosravi, T. “Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes”, Journal of Environmental Health Science and Engineering, 2017; 15(1). doi:10.1186/s40201-017-0269
Forbis-Stokes, A. A., O’Meara, P. F., Mugo, W., Simiyu, G. M., and Deshusses, M. A. “On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine”, Environme-ntal Engineering Science, 2016; 33(11), 898–906. doi:10.1089/ees.2016.0148
Ramaraj, R., and Dussadee, N. “Biological purification processes for biogasusing algae cultures: a review”, International Journal of Sustainableand Green Energy, 2015; Special Issue: Renewable Energy Applications in the Agricultural Field and Natural Resource Technology, 4,20–32.
Kasinski, S. “Mesophilic and Thermophilic Anaerobic Digestion of Organic Fraction Separated during Mechanical Heat Treatment of Municipal Waste”, Applied Sciences, 2020; 10(7), 2412.doi:10.3390/app10072412
Semiyaga, S., Nakagiri, A., Niwagaba, C. B., and Manga, M. “Application of Anaerobic Digestion in Decentralized Faecal Sludge Treatment Plants”, In: Meghvansi, M.K., Goel, A.K. (eds) Anaerobic Biodigesters for Human Waste Treatment. Environmental and Microbial Biotechnology, 2022; Springer, Singapore. https://doi.org/10.1007/978-981-19 -4921-0_14
Jákói, Z., Hodúr, C. and Beszédes, S. “Monitoring the Process of Anaerobic Digestion of Native and Microwave Pre-Treated Sludge by Dielectric and Rheological Measurements”, Water, 2022; 14, 1294. https://doi.org/10.3390/w14081294
Afifah, U., and Priadi, C. R. “Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste”, Renewable Energy Technology and Innovation for Sustainable Development, 2017; AIP Confere-nce Proceedings, 1826, 020032-1–020032-8; doi: 10.1063/1.4979248
Rehman, K. U., Cai, M., Xiao, X., Zheng, L., Wang, H., Soomro, A. A., Zhou, Y., Li, W., Yu, Z., and Zhang, J. “Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetiaillucens L.)”, Journal of environmental management, 2017; 196, 458–465. https://doi.org/10.1016/j.jenvma n.2017.03.047
Lopes, I. G., Yong, J. W. and Lalander, C. “Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives”, Waste Management, 2022; 142, 65–76
Lalander, C., Diener, S., Zurbrügg, C., and Vinnerås, B. “Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens)”, Journal of Cleaner Production, 2018; doi:10.1016/j.jclepro.2018.10.0
Beesigamukama, D., Mochoge, B., Korir, N., Musyoka, M., Fiaboa, K. K. M., Nakimbugwe, D., Khamis, F. M., Subramanian, S., Dubois, T., Ekesi, S., and Tanga, C. M. “Nitrogen fertilizer equivalence of black soldier fly frass fertilizer and synchrony of nitrogen mineralization for maize production”, Agronomy, 2020; 10, 1395. https://doi.org/10.3 390/agronomy10091395
Biancarosa, I., Liland, N. S., Biemans, D., Araujo, P., Bruckner, C. G., Waagbo, R., Torstensen, B. E., Lock, E. J. and Amlund, H. “Uptake of heavy metals and arsenic in Black Soldier Fly (Hermetiaillucens) larvae grown on seaweed-enriched media”, Journal of the Science of Food and Agriculture, 2018; 98 (6), 2176–2183. https://doi.org/10.1002/jsfa.8702.
Brisolara, K. F., and Bourgeois, J. “Biosolids and sludge management”, Water Environment Research, 2019; 91 (10), 1168–1176. https://do i.org/10.1002/wer.1212
Bohm, K., Hatley, G. A., Robinson, B. H., and Guti ́errez-Gin ́es, M. J. “Black Soldier Fly-based bioconversion of biosolids creates high-valueproducts with low heavy metal concentrations”, Resources, Conservation and Recycling, 2022; 180, 106149
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nigerian Journal of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.