MAXIMIZING NETWORK CAPACITY, CONTROL AND MANAGEMENT IN DESIGNING A TELEMEDICINE NETWORK: A REVIEW AND RECENT CHALLENGES

Authors

  • B. O. Sadiq Department of Computer Engineering, Ahmadu Bello University, Zaria, Nigeria, and Department of Electrical, Telecommunication and Computer Engineering, Kampala International University, Uganda
  • O. S. Zakariyya Department of Electrical and Electronic Engineering, University of Ilorin, Kwara State Nigeria
  • M. D. Buhari Department of Electrical and Electronic Engineering, ATBU Bauchi, Bauchi State Nigeria, and Department of Electrical, Telecommunication and Computer Engineering, Kampala International University, Uganda
  • A. N. Shuaibu Department of Electrical and Electronics Engineering, University of Jos, Jos Nigeria, and Department of Electrical, Telecommunication and Computer Engineering, Kampala International University, Uganda

DOI:

https://doi.org/10.4314/njt.v43i1.11

Keywords:

Optical networks, Telemedicine Network, Unmanned Aerial Vehicles (UAV), SDN, QoS, Network capacity

Abstract

Telemedicine networks have seen significant changes in their capacity, monitoring, management, and control framework during the previous decades. The evolution of network capacity, control, and management for Unmanned Aerial Vehicle (UAV) & Software-Defined Networks (SDN) as support to telemedicine, artificial intelligence in telemedicine networks, and capabilities in designing a telemedicine network with respect to its performance and customization is presented in this study, with a historical history and a future view. The first section of the article goes over the history of traffic and capacity expansion, as well as future projections. By introducing a medical and image data communication protocol for telemedicine, the second section examines the technological constraints of expanding capacity in the era of UAV & software-defined networking. The third section discusses ways to maximize network capacity by considering quality of service (QoS) capacity issues. Finally, the article explores how to construct a telemedicine network that can provide performance, customization, and capabilities to keep up with increased traffic in the coming decades. Research gaps and future directions were presented in the last section.

References

Essiambre, R. J., and Tkach, R. W. “Capacity trends and limits of optical communication networks”, Proceedings of the IEEE, 2012; 100(5) 1035-55, https://doi.org/10.1109/JPRO C.2012.2182970

Andriolli, N., Giorgetti, A., Castoldi, P., Cecchetti, G., Cerutti, L., Sambo, N., Sgambelluri, A., Valcarenghi, L., Cugini, F., Martini, B., and Paolucci, F. “Optical networks management and control: A review and recent challenges”, Optical Switching and Network-ing, 2022, 44, https://doi.org/10.1016/j.osn.2 021.10065

Chand, R. D., Kumar, A., Tiwari, P., Rajnish, R., and Mishra, S. K. “Advanced communication technologies for collaborative learning in telemedicine and telecare”, 9th IEEE International Conference on Cloud Computing, Data Science and Engineering (Confluence) 2019, pp. 601-605. https://doi.org /10.1109/CONFLUENCE.2019.8776970

Basheeruddin, A., Naveen, N. R., Gunturu, L. N., Pamayyagari, K., Abdullah, I., Sreeharsha, N., Imran, M., Alsalman, A. J., Al Hawaj, M. A., Alsubaie, A. A., and Alanzi, K. D. “Wireless Networking-Driven Healthcare Approaches in Combating COVID-19”, BioMed Research International, 2021, https://d oi.org/10.1155/2021/9195965

V.P Ranganath, Y.J Kim, and J. Hatcliff. Communication patterns for interconnecting and composing medical systems. In 37th Annual IEEE International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) pp. 1711-1716, https://doi.org/ 10.1109/EMBC.2015.7318707

S. Vishnu, S.J Ramson, and R. Jegan. Internet of medical things (IoMT)-An overview. In 5th IEEE international conference on devices, circuits, and systems (ICDCS), pp. 101-104, https://doi.org/10.1109/ICDCS48716.2020.243558

B. Iancu, R. Kovacs, V. Dadarlat and A. Peculea. Interconnecting heterogeneous non-smart medical devices using a wireless sensor networks (WSN) infrastructure. In International Conference on Advancements of Medicine and Health Care through Technology; Springer, 12th-15th October 2017, Cluj-Napoca, Romania, pp. 207-212, https://doi.org/10.1007/978-3-319-52875-5_45

K. Sharma, D. Anand, M. Sabharwal, P.K Tiwari, O. Cheikhrouhou, and T. Frikha. A Disaster Management Framework Using Internet of Things-Based Interconnected Devices. Mathematical Problems in Engineering, Hindawi (2021), 1-21, https://doi.org/10.1155/2021/9916440

B.I Djibo, and A. Kora. Prospects for the Development of e-Health in Africa through the Integration of Optical Networks. In IREHI (2019), pp. 162-172, https://www.itu.int/ITU-D/cyb/app/docs/e-Health_prefinal_15092008. PDF

P. Whitten, and B.D Sypher. Evolution of telemedicine from an applied communication perspective in the United States. Telemedicine Journal & e-Health (2006) 12(5), 590-600, https://doi.org/10.1089/tmj.2006.12.590

M. Martin-Khan, S. Freeman, K. Adam, and G. Betkus. The evolution of telehealth. In Mobile e-Health, Springer, Cham. (2017), 173-198, https://doi.org/10.1007/978-3-319-60672-9_8

N. Chuchvara, R. Patel, R. Srivastava, C. Reilly, and B.K. Rao. The growth of tele dermatology: expanding to reach the underserved. Journal of the American Academy of Dermatology, (2020), 82(4), 1025-1033, https://doi.org/10.1016/j.jaad.2019.11.05 5

M. Estai, Y. Kanagasingam, D. Xiao, J. Vignarajan, B. Huang, E. Kruger, and M. Tennant. A proof-of-concept evaluation of a cloud-based store-and-forward telemedicine app for screening for oral diseases. Journal of telemedicine and telecare, (2016), 22(6) 319-325, https://doi.org/10.1177/1357633X156045 54

R. Shahzadi, S.M. Anwar, F. Qamar, M. Ali, J.J Rodrigues, and M. Alnowami. Secure EEG signal transmission for remote health monitoring using optical chaos. IEEE Access, (2019) 7, 57769-57778. https://doi.org/10.1109/ACCESS.2019.2912548

M. Siraj, M. Shoaib, and L. Memon. Performance Enhancement of Telemedicine Network by Free Space Optics Links Provisioning, Provisioning. Acta Physica Polonica (2017) 131(1) 43-54.

Hamid, F. S. “The difference between IEEE 802.16/WiMAX and IEEE 802.11/Wi-Fi networks for Telemedicine. Applications”, International Journal of Recent Technology and Engineering (IJRTE), 2013, 2(5) 2277-3878.

M.S. Krishnan, D. Sheela. and C. Chellamuthu. Design and dimensioning strategies for telemedicine backbone networks with optical links. In IEEE International Conference on Information Communication and Embedded Systems (ICICES) (2013), 780-784. https://doi.org/10.1109/ICICES.2013.6508233

Anwar, S., Prasad, R., Chowdhary, B. S., and Anjum, M. R. “A telemedicine platform for disaster management and emergency care”, Wireless Personal Communications, 2019, 106(1), 191-204. https://doi.org/10.1007 /s11277-019-06273-6

B. Ainslie, K. Beales, C. Day. and J. Rush. The design and fabrication of monomode optical fiber. IEEE Journal of Quantum Electronics (1982), 18(4), 514-523, https://doi.org/10.1007 /s11277-019-06273-6

P. Yadav, R. Agrawal, and K. Kashish. Performance evaluation of ad hoc wireless local area network in telemedicine applications. Procedia Computer Science, 2018, 125, 267-274. https://doi.org/10.1016/j.procs.2017.12.03 6

I. De La Torre Díez, S.G. Alonso, S. Hamrioui, M. López-Coronado, and E.M. Cruz. Systematic review about QoS and QoE in telemedicine and eHealth services and applications. Journal of medical systems, (2018) 42(10), 1-10. https://doi.org/10.1007/s 10916-018-1040-4

L. O Nweke, and M.A. Al-Sharafi. “Applying software-defined networking to support telemedicine health consultation during and post-Covid-19 era”, Health and technology, 2021, 11(2), 395-403. https://doi.org/10.1007/s 10916-018-1040-4

L. Valcarenghi, A. Pacini, A. Sgambelluri, and F. Paolucci. A Scalable Telemetry Framework for Zero Touch Optical Network Management. In IEEE International Conference on Optical Network Design and Modeling (ONDM), 2021, 1-6, https://doi.org/10.1007/s12553-020-00502 -w

R. Latha, P. Vetrivelan, and S. Geetha. Telemedicine setup using wireless body area network over the cloud. Procedia Computer Science, 2019; 165, 285-291, https://doi.org/10. 1016/j.procs.2020.01.074

A. Alamri. Cloud-based e-health multimedia framework for heterogeneous network. In IEEE International Conference on Multimedia and Expo Workshops, (2012), 447-452. https://doi.org/10.1109/ICMEW.2012.84

S. Ahmed, and M.Y.A. Raja. Virtual Hospitals: Integration of Telemedicine, Healthcare Services, and Cloud Computing in Telemedicine and Electronic Medicine, CRC Press (2018) 51-72.

A. Garai, I. Péntek and A. Adamkó. Revolutionizing healthcare with IoT and cognitive, cloud-based telemedicine. Acta Polytechnica Hungarica, (2019) 16(2), 163-181.

M.M. Abdellatif and W. Mohamed. Telemedicine: An IoT-Based Remote Healthcare System. International Journal of Online & Biomedical Engineering, (2020) 16(6).

N. Alahmari, S. lswedani, A. Alzahrani, I. Katib, A. Albeshri and R. Mehmood. A Data-Driven AI Approach and Tool to Co-Create Healthcare Services with a Case Study on Cancer Disease in Saudi Arabia. Sustainability, 2022, 14(6), https://doi.org/10.3390/su140633 13

A. Ashu, and S. Sharma. A novel approach of telemedicine for managing fetal condition based on machine learning technology from IoT-based wearable medical device. Machine Learning and the Internet of Medical Things in Healthcare, 2021, 13-134, https://doi.org/10.10 16/B978-0-12-821229-5.00006-9

X. Zhang, J. Sun, and C. Li. Development and research of exercise heart rate monitoring system under the concept of Internet of things telemedicine and mobile health. Journal of Medical Imaging and Health Informatics, 2021, 11(4), 1106-1111, https://d oi.org/10.1166/jmihi.2021.3419

Y. Feng, and Z. Pan. “Optimization of remote public medical emergency management system with low delay based on internet of things”, Journal of Healthcare Engineering, 2021, https://doi.org/10.1155/2021/5570500

M.S. Perera, M.N Halgamuge, R. Samarakody and A. Mohammad. 2021. Internet of things in healthcare: A survey of telemedicine systems used for elderly people. Springer Singapore IoT in Healthcare and Ambient Assisted Living, 2021, 69-88, https://doi.org/10.1007/978-981-15-9897-5_4

K. Kolisnyk, V. Kartashov, R. Tomashevskyi, V. Kolisnyk, S. Koval, and P. Zamiatin. The Use of Drones to Improve the Efficiency of Using Telemedicine Systems in Emergencies. In IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, 1-6, 10.1109 /KhPIWeek57572.2022.9916362

K. Bhatt, A. Pourmand. and N. Sikka. Targeted applications of unmanned aerial vehicles (drones) in telemedicine. Telemedicine and e-Health, 2018, 24(11), 833-838, https://doi.org/1 0.1089/tmj.2017.0289

B.A Jnr, L.O. Nweke. and M. A. Al-Sharafi. Applying software-defined networking to support telemedicine health consultation during and post Covid-19 era. Health and technology, 2021, 11, 395-403, https://doi.org/10.1007/s1 2553-020-00502-w

R. Mohammadi, and R. Javidan. On the feasibility of telesurgery over software defined networks. International Journal of Intelligent Robotics and Applications, (2018) 2, 339-350, https://doi.org/10.1007/s41315-018-0059-5

S.I Khan, Z. Qadir, H.S. Munawar, S.R. Nayak, A.K Budati, K.D. Verma and D. Prakash. UAVs path planning architecture for effective medical emergency response in future networks. Physical Communication, (2021) 47, https://doi.org/10.1016/j.phycom.2021.101337

P.S Pandian, K.P Safeer, D.T Shakuntala, P. Gopal, V.C. Pataki. Store and Forward Applications in Telemedicine for Wireless IP Based Networks. J. Networks. (2007) 2(6) 58-65.

J.N Stahl, J. Zhang, C. Zellner, P. Pomerantsev, T.M. Chou, H.K Huang. Teleconferencing with dynamic medical images. IEEE Transactions on Information Technology in Biomedicine. (2000) 4(2) 88-96, 10.1109/4233.845201

J.E Cabral and Y. Kim. “Multimedia systems for telemedicine and their communications requirements”, IEEE Communications Magazi-ne, 1996, 34(7), pp.20-27, 10.1109/35. 526884

J. Falconer, W. Giles, and H. Villanueva. Realtime ultrasound diagnosis over a wide-area network (WAN) using off-the-shelf components. Journal of Telemedicine and Telecare, 1997, 3(1), 28-30, https://doi.org/10.1 258/1357633971930265

H.W. Tyrer, P. Wiedemeier, and R. Cattlet. Rural Telemedicine: Satellites and Fiber-Optics. Biomedical Sciences Instrumentation, 2001, 37, 417-422.

A. Zvikhachevskaya, G. Markarian, L. Mihaylova. Quality of service consideration for the wireless telemedicine and e-health services. In IEEE Wireless Communications and Networking Conference (2009) pp. 1-6, 10.1109/WCNC.2009.4917925

M. Onken, M. Eichelberg, J. Riesmeier, and P. Jensch. Digital imaging and communications in medicine. In Biomedical Image Processing (2010) pp. 427-454. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1 007/978-3-642-15816-2_17

W. Hammond. Health level 7 a protocol for the interchange of healthcare data. In Progress in standardization in health care informatics, 1993, pp. 144-148, https://ebooks.iospress.nl/d oi/10.3233/978-1-60750-850-2-144

D. Meyer-Ebrecht. Picture archiving and communication systems (PACS) for medical application. International journal of bio-medical computing, (1994) 35(2), pp.91-124. https://doi.org/10.1016/0020-7101(94)90061-2

M.S.A Nabi, M.M Kiah, B.B. Zaidan, A.A Zaidan. and G.M. Alam. Suitability of using SOAP protocol to secure electronic medical record databases transmission. International Journal of Pharmacology, (2010) 6(6), 959-964, http://eprints.um.edu.my/id/eprint/12063

[link] HL7 International. (2021). HL7 Standards. https://www.hl7.org/

J. Lissner, U. Fink. Digital imaging and picture archiving and communication systems. Current Opinion in Radiology (1991) 3(2) 267-74.

National Electrical Manufacturers Association. “Digital Imaging and Communications in Medicine (DICOM)”, 2016, https://www.nem a.org/Standards/Pages/Digital-Imaging-and-Co mmunications-in-Medicine.aspx

[link] World Wide Web Consortium. (2007). Simple Object Access Protocol (SOAP) 1.1. https://www.w3.org/TR/soap/

M. Chen, S. Gonzalez, and A.V. Vasilakos. Body area networks: A survey. Mobile networks and applications, 2011, 15(2), 171-193. https://doi.org/10.1007/s11036-010-0260-8

Y. Chen, Q. Zhao. On the lifetime of wireless sensor networks. IEEE Communications letters, 2005, 9(11). 10.1109/LCOMM.2005.1 1010

IEEE Standard for Local and Metropolitan Area Networks--Port-Based Network Access Control," in IEEE Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010 Incorporating IEEE Std 802.1Xbx-2014 and IEEE Std 802.1Xck-2018), pp.1-289, 2020, 10.1109/IEEESTD.20 20.9018454.

[link] https://www.iso.org/standard/77338.html ISO/IEEE, Health informatics--Personal health device communication

M. Yaghoubi, K. Ahmed, Y. Miao. Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges. Journal of Sensor and Actuator Networks. (2022) 11(4) 67, https://doi.org/10.3390/jsan11040067

R. Latha, and P. Vetrivelan. Wireless body area network (WBAN)-based telemedicine for emergency care. Sensors, (2020) 20(7), 21-53. https://doi.org/10.3390/s20072153

P.K.D. Pramanik, A. Nayyar and G. Pareek. WBAN: Driving e-healthcare beyond telemedicine to remote health monitoring: Architecture and protocols. In Telemedicine technologies (2019) pp. 89-119, https://doi.org/ 10.1016/B978-0-12-816948-3.00007-

A. Basnet, A. Alsadoon, P.W.C Prasad, O.H. Alsadoon, L. Pham and A. Elchouemi. A novel secure patient data transmission through wireless body area network: Health tele-monitoring. International Journal of Communication Networks and Information Security, 2019, 11(1), 93-104.

S. Vyas. and S. Gupta. WBAN-based remote monitoring system utilizing machine learning for healthcare services. International Journal of System of Systems Engineering, 2023, 13(1), 100-108. https://doi.org/10.1504/IJSSE.2023.1 29054

N. Mahmoud, S. El-Sappagh, H.M. El-Bakry and S. Abdelrazek. A real-time framework for patient monitoring systems based on a wireless body area network. Int. J. Comput. Appl, 2020, 176(27), 12-21.

F.I Ali, T.E Ali and A.H Hamad. Telemedicine Framework in COVID-19 Pandemic. In IEEE International Conference on Engineering and Emerging Technologies (ICEET) (2021) (pp. 1-8). 10.1016/j.jtumed.2020.12.010

S.M Chowdhury, M.H Kabir, K. Ashrafuzzaman, and K.S Kwak. A telecommunication network architecture for telemedicine in Bangladesh and its applicability. International Journal of Digital Content Technology and its Applications, 2009, 3(3) 4-12.

F.P Wijaya. The Potential Implementation of Telemedicine in Frontier, Outmost, and Underdeveloped Region of Indonesia. In IEEE 2nd International Conference on ICT for Rural Development (IC-ICTRuDev) (2021) (pp. 1-6) 10.1109/IC-ICTRuDev50538.2021.9656502

R.D Chand, A. Kumar, A. Kumar, P. Tiwari, R. Rajnish. and S.K Mishra. Advanced communication technologies for collaborative learning in telemedicine and tele-care. In IEEE 9th International Conference on Cloud Computing, Data Science and Engineering (Confluence) 2019, (pp. 601-605), 10.1109/CONFLUENCE.2019.8776970

I.P Singh, L. Kapoor, R. Daman and S.K Mishra. Comparative study of connectivity in telemedicine. Telemedicine and e-Health, 2008, 14(8), 846-850. https://doi.org/10.1089/t mj.2008.0095

D.H Hailu, G.G Lema, B.G Gebrehaweria and S.H Kebede. Quality of Service (QoS) improving schemes in optical networks. Heliyon, 2020, 6(4), https://doi.org/ 10.1016/j.heliyon.2020.e03772

M.A Algaet, Z.A Noh, A.S Shibghatullah, A.A Milad and A. Mustapha. Provisioning quality of service of wireless telemedicine for e-health services: A review. Wireless Personal Communications, 2014, 78, 375-406, https://do i.org/10.1007/s11277-014-1758-3

A.S Albahri, J.K Alwan, Z.K Taha, S.F Ismail, R.A Hamid, A.A Zaidan, O.S Albahri, B.B Zaidan, A.H Alamoodi, and M.A Alsalem. IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. Journal of Network and Computer Applications, 2021, 173. https://doi.org/10.1016/j.jnca.2020.10287 3

Q.K Al-Shayea. Telemedicine using cloud computing in Jordan. In Competition Forum, 2015, 13(2) p. 390. American Society for Competitiveness.

S. Bhaskar, S. Bradley, S. Sakhamuri, S. Moguilner, V.K Chattu, S. Pandya, S., Schroeder, S., D. Ray. and M. Banach. Designing futuristic telemedicine using artificial intelligence and robotics in the COVID-19 era. Frontiers in public health, 2020, p.708. https://doi.org/10.3389/fpubh.202 0.556789

D.S Montero, L.P Garcilópez, C.V García, P.C Lallana, A.T Moraleda and P.J.P Castillo. Recent advances in wavelength-division-multiplexing plastic optical fiber technologies, 2015, http://dx.doi.org/10.5772/ 59518

C. Sukic, M. Kudumovic and M. Mujevic. Advanced Technology of Information Transfer on Distance for Telemedicine Needs. In INTED2011 Proceedings (pp. 1941-1948). IATED.

A. Aswanth, E. Manoj, K. Rajendran, S.K EM, and S. Duttagupta. Meeting Delay guarantee in Telemedicine service using SDN framework. In IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 2021, (pp. 1-5) 10.1109/R10-HTC53172.2021.9641695

S. Bharatula, and M. Meenakshi. Design of Cognitive Radio Network for Hospital Management System. Wireless Personal Communications, 2016, 90(2), 1021–1038. doi:10.1007/s11277-016-3280-2

R. Chavez-Santiago, K.E Nolan, O. Holland, L. De Nardis, J. Ferro, N. Barroca, N. Balasingham, I. Cognitive radio for medical body area networks using ultra-wideband. IEEE Wireless Communications, 2012, 19(4), 74-81, doi:10.1109/mwc.2012.6272426

S. Feng, Z. Liang, and D. Zhao. Providing telemedicine services in an infrastructure-based cognitive radio network. IEEE Wireless Communications, (2010) 17(1), 96-103, doi:10.1109/mwc.2010.5416356

A. Z Shaikh, and L. Tamil. Cognitive Radio Enabled Telemedicine System. Wireless Personal Communications, (2015) 83(1), 765–778. doi:10.1007/s11277-015-2423-1

A. Adarsh, S. Pathak, B. Kumar. Design and Analysis of a Reliable, Prioritized and Cognitive Radio-Controlled Telemedicine Network Architecture for Internet of Healthcare Things, International Journal of Computer Networks and Applications (IJCNA), 2021, 8(1), PP: 54 - 66, DOI: 10.22247/ijcna/2021/2 07982

M. Suriya and M. Sumithra. Efficient evolutionary techniques for WBAN using cognitive radio networks. In Computational Intelligence and Sustainable Systems, Berlin (2019), Germany: Springer, pp. 61–70, https://doi.org/10.1007/978-3-030-02674-5_4

B. Bozorgchami and S. Sodagari. Spectrally efficient telemedicine and in-hospital patient data transfer. 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA). https://doi.org/doi:10. 1109/memea.2017.7985866

C. Hsu, X. Chen, W. Lin, C. Jiang, Y. Zhang, Z. Hao and Y. C. Chung. Effective multiple cancer disease diagnosis frameworks for improved healthcare using machine learning. Measurement, 2021, 175, 109145. https://doi. org/doi: 10.1016/j.measurement.2021.109145

J. Lewandowski, H. Arochena, R. N.G Naguib, K.M Chao and A. Garcia-Perez, A. Logic-Centered Architecture for Ubiquitous Health Monitoring. IEEE Journal of Biomedical and Health Informatics, (2014) 18(5), 1525-1532. https://doi.org/doi:10.1109/jbhi.2014.2312352

S. Zhang, S.I McClean, C.D. Nugent, M.P. Donnelly, L. Galway, B.W. Scotney, and I. Cleland. A Predictive Model for Assistive Technology Adoption for People with Dementia. IEEE Journal of Biomedical and Health Informatics, (2014) 18(1), 375–383. https://doi.org/doi:10.1109/jbhi.2013.2267549

L. Clifton, D.A Clifton, M.A.F Pimentel, P.J Watkinson and L. Tarassenko. Predictive Monitoring of Mobile Patients by Combining Clinical Observations with Data from Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 18(3), 722–730. https://doi.org/doi:10.1109/jbhi.2013.2293059

R. LeMoyne, T. Mastroianni, A. Hessel, and K. Nishikawa. Ankle Rehabilitation System with Feedback from a Smartphone Wireless Gyroscope Platform and Machine Learning Classification. 14th IEEE International Conference on Machine Learning and Applications (ICMLA), 2015, https://doi.org/ doi:10.1109/icmla.2015.213

T. Hofer, M. Schumacher, S. Bromuri. COMPASS: an Interoperable Personal Health System to Monitor and Compress Signals in Chronic Obstructive Pulmonary Disease. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare, 2015, https://doi.org/doi: 10.4108/i cst.pervasivehealth.2015.259186

A. Abdelaziz, M. Elhoseny, A.S. Salama, A.M. Riad, A Machine Learning Model for Improving Healthcare services on Cloud Computing Environment, Measurement (2018), https://doi.org/10.1016/j.measurement.2018.01.022

Hu, H., Wang, H., Wang, F., Langley, D., Avram, A., and Liu, M. (2018). Prediction of influenza-like illness based on the improved artificial tree algorithm and artificial neural network. Scientific Reports, 8(1). https://doi.or g/doi:10.1038/s41598-018-23075-1

Lu, F. S., M.W Hattab, C.L Clemente, M. Biggerstaff, and M. Santillana. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nature Communications, 2019. 10(1). https://doi.org/doi:10.1038/s41467-018-08082-0.

S. Bhaskar, S. Bradley, S. Sakhamuri, S. Moguilner, V.K Chattu, S. Pandya M. Banach. Designing Futuristic Telemedicine Using Artificial Intelligence and Robotics in the COVID-19 Era. Frontiers in Public Health, 2020, https://doi.org/doi:10.3389/fpubh.2020.556789

S.M Qaisar, and S.F. Hussain. Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Computer Methods and Programs in Biomedicine, 2021, 203, 106034. https://doi.org/doi:10.1016/j.cmpb.2021.106034

A. A. Ahmed, and M. Abouzid. Arbidol targeting influenza virus A Hemagglutinin; A comparative study. Biophysical Chemistry, 2021, 277, 106663. https://doi.org/doi:10.101 6/j.bpc.2021.106663

A. T. Ozdemir, C. Tunc, and S. Hariri. Autonomic fall detection system,” In Proceedings of IEEE 2nd International Workshops on Foundations and Applications of Self Systems, (2017), pp. 166–170, 10.1109/FAS-W.2017.142

K. N. Lal and A. Kumar. E-health application over 5G using Content-Centric networking (CCN). In IEEE International Conference on IoT and its Applications, ICIOT (2017) 10.1109/ICIOTA.2017.8073614

B. S. Kim, “A distributed coexistence mitigation scheme for IoT-based smart medical systems,” J. Inf. Process. Syst., (2017) 13 (6) 1602–1612, https://doi.org/doi: 10.3745/JIPS. 03.0087.

N. Hayati and M. Suryanegara. The IoT LoRa system design for tracking and monitoring patient with mental disorder. In IEEE International Conference on Communication, Networks and Satellite, COMNETSAT (2017) pp. 135–139, 10.1109/COMNETSAT.2017.8 263587

D. Borthakur, H. Dubey, N. Constant, L. Mahler, and K. Mankodiya, Smart fog: Fog computing framework for unsupervised clustering analytics in wearable Internet of Things, IEEE Global Conference on Signal and Information Processing, Global SIP (2017) pp. 472–479, 10.1109/GlobalSIP.2017.8308687.

C. Liu, X. Zhang, L. Zhao, F. Liu, C. Chen, Y. Yao, J. Li. Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system. IEEE Internet of Things Journal. (2018) 6(2) 1363-74, 10.1109/JIOT.2018.2844090

A. Archip, N. Botezatu, E. Serban, P.C. Herghelegiu, and A. Zala. An IoT based system for remote patient monitoring. 17th IEEE International Carpathian Control Conference (ICCC), 2016, 10.1109/CarpathianCC.2016.75 01056

Y. Zhong, Z. Xu, and L. Cao. Intelligent IoT-based telemedicine systems implement for smart medical treatment. Personal and Ubiquitous Computing springer, 2021, https://doi.org/10.1007/s00779-021-01633-1 -1

K. Hameed, I. S. Bajwa, S. Ramzan, W. Anwar, A. Khan. An Intelligent IoT Based Healthcare System Using Fuzzy Neural Networks", Hindawi, 2020, https://doi.org/10.1155/2020/8 836927.

A.S Albahri, J. K Alwan, Z.K Taha, S.F Ismail, R.A. Hamid, A.A Zaidan, O.S Albahri, B.B Zaidan, A.H Alamoodi, M.A Alsalem. IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art, Journal of Network and Computer Applications, 2020, https://doi.org/10.1016/j.jnca.2020.102873.

H. Hamil, Z. Zidelmal, M.S Azzaz, S. Sakhi, R. Kaibou, S, Djilali, and D. Abdeslam. Design of a secured telehealth system based on multiple bio signals diagnosis and classification for IoT application. Expert Systems, 2021, https://doi.org/10.1111/exsy.12765

I.D Sabukunze, D.B Setyohadi, and M. Sulistyoningsih. Designing An IoT Based Smart Monitoring and Emergency Alert System for Covid19 Patients. 6th IEEE International Conference for Convergence in Technology (I2CT), 2021, 10.1109/I2CT51068.2021.9418 078

B. Woodward, R. S. H Istepanian, and C.I Richards. Design of a telemedicine system using a mobile telephone. IEEE Transactions on Information Technology in Biomedicine, (2001) 5(1), 13–15. 10.1109/4233.908361

S.K Yoo, S.M Jung, B.S Kim, H.Y Yun, S.R Kim, and D.K Kim. Prototype Design of Mobile Emergency Telemedicine System. Springer, 2005, 1028–1034. https://doi.org/1 0.1007/11424826_110

J. Li, L. Wilson, S. Stapleton, and P. Cregan. Design of an advanced telemedicine system for emergency care. Proceedings of the 20th Conference of the Computer-Human Interaction Special Interest Group (CHISIG) of Australia on Computer-Human Interaction, pp. 413-416, https://doi.org/10.1145/1228175.122 8261

G.D Sworo, M. Kam, and E.J Juan. Design of a Telemedicine-based system for Clinic-In-A-Can. IEEE Global Humanitarian Technology Conference (2012). 10.1109/GHTC.2012.43

M. Abo-Zahhad, S.M Ahmed, and O. Elnahas. A Wireless Emergency Telemedicine System for Patients Monitoring and Diagnosis. International Journal of Telemedicine and Applications, 2014, 1–11. https://doi.org/10.11 55/2014/380787

N.N Castellano, J.A Gazquez, R.M García Salvador, A. Gracia-Escudero, M. Fernandez-Ros and F. Manzano-Agugliaro. Design of a real-time emergency telemedicine system for remote medical diagnosis. Biosystems Engineering, 2015, 138, 23–32. https://doi.or g/10.1016/j.biosystemseng.2015.03.017

S. Poonguzhali, and R. Chakravarthy. A sensor based intelligent system for classification and assistance of diabetes patients in telemedicine technology. Journal of Intelligent & Fuzzy Systems, (2020) 1–10.

J. W Lin, C.Y Siao, R.G Chang. and M.L Hsu. Telemedicine System Based on Medical Consultation Assistance Integration. Journal of Software Engineering and Applications, (2021) 14, 537-548. https://doi.org/10.4236/jsea.2021. 1410031.

Downloads

Published

2024-03-31

Issue

Section

Computer, Telecommunications, Software, Electrical & Electronics Engineering

How to Cite

MAXIMIZING NETWORK CAPACITY, CONTROL AND MANAGEMENT IN DESIGNING A TELEMEDICINE NETWORK: A REVIEW AND RECENT CHALLENGES. (2024). Nigerian Journal of Technology, 43(1). https://doi.org/10.4314/njt.v43i1.11