SWAT HYDROLOGICAL MODEL OF ZAMFARA WATERSHED OF SOKOTO-RIMA RIVER CATCHMENT, NORTH WEST NIGERIA

Authors

  • A. M. Shuaibu Department of Geology, Faculty of Science, Federal University Lokoja, Kogi State
  • K. A. Murana Department Geological Sciences, Faculty of Science, Federal University Gusau, Zamfara State

DOI:

https://doi.org/10.4314/njt.v43i4.22

Keywords:

SWAT model, hydrological assessment, water availability, Sokoto River basin, Sensitivity analysis

Abstract

This study employs the Soil and Water Assessment Tool (SWAT) hydrological model to comprehensively analyze the water dynamics within the Zamfara watershed. The model's efficacy in assessing diverse hydrological processes is established through meticulous calibration and validation processes. A sensitivity analysis scrutinizes the model's responsiveness to various thresholds in sub-basin delineation and the definition of Hydrologic Response Units (HRUs). The study's outcomes reveal discernible patterns in annual precipitation, groundwater recharge, and evapotranspiration within the basin. These findings shed light on crucial factors that influence the basin's water balance. They underscore the vital necessity of a thorough hydrological understanding to effectively manage water resources in the Zamfara watershed. The assessment of the catchment's hydrology indicates an average annual precipitation of 876.61 mm. Groundwater recharge accounts for 25.07% of the total groundwater system input, averaging 219.77 mm annually. Notably, only 5% of the overall groundwater recharge contributes to replenishing deep groundwater recharge storage, while the remaining portion refills the shallow aquifer. Consequently, evapotranspiration emerges as the most substantial constituent of the water balance, representing 57% with an average of 500.79 mm per year. Runoff constitutes a mere 12.44% of the total basin output, while the remaining components of precipitation are lost. It is essential to highlight that evapotranspiration serves as the primary mechanism for water loss from the catchment. The calibration and validation phase exhibited by the SWAT model within the confines of the study area showcased exceptional efficacy, achieving notably high R-squared (R2) values surpassing the threshold of 0.80 for the designated gauging sites. This remarkable achievement underscores the SWAT model's commendable aptitude and reliability in conducting precise hydrological assessments within the intricate dynamics of the Zamfara watershed. The total groundwater reserve of the watershed catchment area is estimated at 24,767,082 m3. This suggests high amount of groundwater reserve within the study area for both agricultural and domestic usage.

References

[1] Rodriguez-Iturbe, I. A. “Hydrologic Perspective of Climate-Soil Vegetation Dynamics”, Water Resour. Res. 36 (1), 3–9. 2000. https://doi.org/10.1029/1999WR900210

[2] Dovie, D. B. K., and Kasei, R. A. “Hydro-Climatic Stress, Shallow Groundwater Wells and Coping in Ghana’s White Volta Basin”, Sci. Total Environ. 636, 1268–1278. 2018. 10.1016/j.scitotenv.2018.04.416 .

[3] Ridoutt, B. G., Eady, S. J., Sellahewa, J., Simons, L., and Bektash, R. “Water Foot Printing at The Product Brand Level: Case Study and Future Challenges”, J. Clean. Prod. 17 (13), 1228–1235. 2009. 10.1016/j.jclepro.20 09.03.002.

[4] Van Oel, P. R., Mekonnen, M. M., and Hoekstra, A. Y. “The External Water Footprint of the Netherlands: Geographically-Explicit Quantification and Impact Assessment”, Ecol. 69 (1), 82–92. 2009 https://doi.org/10.1016/j. ecolecon.2009.07.014.

[5] Kunstmann, H., and Jung, G. “Impact of Regional Climate Change on Water Availabi-lity in the Volta basin of West Africa”, IAHS Publ. 295, 75–85. 2005. https://www.zef.de/file admin/template/Glowa/Downloads/Kunstmann_jung_2005.pdf.

[6] Amisigo, B. A. “Modelling River Flow in the Volta Basin of West Africa: A Datadriven Framework”, vol. 34. 2005. https://cuvillier.de /uploads/preview/public_file/5568/3865377017.pdf.

[7] Obuobie, E. “Estimation of Groundwater Recharge in the Context of Future Climate Change in the White Volta River Basin, West Africa”,. Retrieved from: https://bonndoc.ulb. unibonn.de/xmlui/handle/20.500.11811/3712.

[8] Gadissa, T, Nyadawa, M, and Behulu, F. “Comparative Assessment of the Effect of Climate Change and Human Activities on Streamflow Regimes in Central Rift Valley Basin, Ethiopia”, American Journal of Water Resources. 7(1), 23-29. 2019. 10.12691/ajwr-7-1-4.

[9] Maliehe, M., Mulungu, D. M. M. “Assessment of Water Availability for Competing Uses Using SWAT and WEAP in South Phuthiatsana catchment, Lesotho”, Physics and Chemistry of the Earth. Vol. 100 (2017): 305 – 316. 2017. http://dx.doi.org/10.1016/j.pce.2017.02.014.

[10] Gabiri, G., Leemhuis, C., Diekkrüger, B., Näschen, K., Steinbach, S., and Thonfeld, F. “Modelling the Impact of Land Use Management on Water Resources in a Tropical Inland Valley Catchment of Central Uganda, East Africa”, Sci. Total Environ. 653, 1052–1066. 2019. 10.1016/j.scitotenv.2018.10.430 .

[11] Awotwi, A., Yeboah, F., Kumi, M. “Assessing the Impact of Land Cover Changes on Water Balance Components of White Volta Basin in West Africa”, Water Environ. J. 29 (2), 259 – 267. 2015. https://doi.org/10.1111/wej.12100.

[12] Adomako, D., Maloszewski, P., Stumpp, C., Osae, S., and Akiti, T. T. “Estimating Groundwater Recharge From Water Isotope (δ2H, δ18O) Depth Profiles in the Densu River basin, Ghana”, Hydrol. Sci. J. J. Sci. Hydrol. 55 (8), 1405–1416. 2010. https://doi.org/10.1080/ 02626667.2010.527847.

[13] Ampofo, S., Ampadu, B., Douti, N. B., Kusibu, M. M. “Modelling Soil Water Balance of an Agricultural Watershed in the Guinea Savannah Agro-Ecological Zone; A Case of the Tono Irrigation Dam Watershed”, Ghana J. Sci. Technol. Dev. 7 (1), 69 – 81. 2020. https://gjs td.org/index.php/GJSTD/article/view/223/89.

[14] Osei, M. A., Amekudzi, L. K., Wemegah, D. D., Preko, K., Gyawu, E. S., and Obiri-Danso, K. “The Impact of Climate and Land-Use Changes on the Hydrological Processes of Owabi Catchment From SWAT Analysis”, J. Hydrol. Reg. Stud. 25, 100620. 2019. http://dx.doi.org/10.1016/j.ejrh.2019.100620.

[15] Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K. “SWAT: Model Use, Calibration, and validation”, Am. Soci. Agric. Biol. Eng. 55 (4), 1491–1508. 2012. https://swat.tamu.edu/media /90102/azdezasp.pdf.

[16] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. “Soil and Water Assessment Tool Theoretical Documentation”, Version 2009 (Texas Water Resources Institute). https://swat.tamu.edu/media/99192/swat2009-theory.pdf.

[17] Krysanova, V., and White, M. “Advances in water resources assessment with SWAT — An Overview”, Hydrol. Sci. J. 60 (5), 771–783. 2015. https://doi.org/10.1080/02626667.2015.1 029482.

[18] Vairavamoorthy, K., Gorantiwar, S. D., and Pathirana, A. “Managing Urban Water Supplies in Developing Countries – Climate Change and Water Scarcity Scenarios”, Phys. Chem. Earth A/B/C 33 (5), 330–339. 2008. https://doi.org/1 0.1016/j.pce.2008.02.008.

[19] Wada, Y., Van Beek, L. P. H., and Bierkens, M. F. “Modelling Global Water Stress of the Recent Past: On the Relative Importance of Trends in Water Demand and Climate Variability”, Hydrol. Earth Syst. Sci. 15 (12), 3785–3808. 2011. https://doi.org/10.5194/hes s-15-3785-2011.

[20] Akudo, E. O., Egboka, B. C. E., Aniwetalu, E., Nwankwoala, H. O., Odumoso, E. and Chibuzor, S. N. “Soil and Water Assessment Tool (SWAT Model) for Estimating Groundwater Recharge in Sokoto-Rima River Basin, Northwestern Nigeria”, Journal of Mining and Geology, Vol. 58(1) 237 – 245. 2022. Retrieved from: https://www.researchgat e.net/publication/360345497.

[21] Wullobayi, B., Dekongmena, B., Anornua, G. K., Kabo-Bahc, A. T., Larbid, I., Sunkarie, E. D. F., Dileg, Y. T., Agyareh, A., and Gyamfia, C. “Groundwater Recharge Estimation and Potential Recharge Mapping in The Afram Plains of Ghana Using SWAT and Remote Sensing Techniques”, Groundwater for Sustainable Development. Vol. 17, 100741. 2022. https://doi.org/10.1016/j.gsd.2022.1007 41.

[22] Das, N., Mukhopadhyay, S. “Application of Multi-Criteria Decision Making Technique for the Assessment of Groundwater Potential Zones: A Study on Birbhum District, West Bengal, India”, Environment, Development and Sustainability. Volume 22, 931–955. 2020. https://doi.org/10.1007/s10668-018-0227-7.

[23] Kindie, A. T., Enku, T., Moges, M. A., Geremew, B. S., and Atinkut, H. B. “Spatial Analysis of Groundwater Potential Using GIS Based Multi Criteria Decision Analysis Method in Lake Tana Basin, Ethiopia. In: International Conference on Advances of Science and Technology”, Springer Nature Switzerland AG, pp. 439–456. 2019. https://doi.org/ 10.1007/978-3-030-15357-1_37.

[24] Koycegiz, C., Buyuyildiz, M. “Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater”, Water 11 (147), 1–17. 2019. https://doi.org/10.3390/ w11010147.

[25] Raju, R.S., Raju, G.S., Rajasekhar, M., 2019. Identification of Groundwater Potential Zones in Mandavi River basin, Andhra Pradesh, India Using Remote Sensing, GIS And MIF Techniques. HydroResearch. 2, 1–11. 2019. https://doi.org/10.1016/j.hydres.2019.09.001.

[26] Rani, M., Joshi, H., Kumar, K., and Tiwari, A. “Recharge Potential Mapping in Complex Hydrological System of Kosi Basin in the Mid-himalayan Region”, Applications and Challenges of Geospatial Technology, pp. 9 – 23. 2019. http://dx.doi.org/10.1007/978-3-319-99882-4_2.

[27] Sunkari, E. D., Kore, B. M., and Abioui, M. “Hydrogeophysical Appraisal of Groundwater Potential in the Fractured Basement Aquifer of the Federal Capital Territory, Abuja, Nigeria”, Res. Geophys. Sci. Vol. 5, 100012. 2021. https://doi.org/10.1016/j.ringps.2021.100012.

[28] Zhang, L., Dai, Y., Lin, J., Han, J., Sun, X., Li, X., Liu, P., and Liao, A. “Evaluating Spatiotemporal Variations of Groundwater–Surface Water Interaction Using an Integrated Hydrological Model in Huashan Basin”, China. Sustainability. 14, 14325. 2022 https://doi.org/ 10.3390/su142114325.

[29] Epuh1, E. E., Orji, M. J., Iyoyojie, H. A and Daramola, O. E. “Groundwater Potential Mapping in Ikorodu, Lagos State, Nigeria, Using Multi-Criteria Analysis and Hydrogeophysics”, Nigerian Journal of Technology (NIJOTECH) Vol. 39(1), 278 – 292. 2020. https://doi.org/10.4314/njt.v39i1.31.

[30] Obasi1, A. A., Ogbu, K. N., Ndulue, E. L., Ogwo, V. N and Mbajiorgu, C. C. “Prediction of the Impacts of Climate Changes on the Stream Flow of Ajali River Watershed Using Swat Model”, Nigerian Journal of Technology (NIJOTECH). Vol. 36(4), 1286 – 1295. 2017. http://dx.doi.org/10.4314/njt.v36i4.39.

[32] Chen, L., and Frauenfeld, O. W. “Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models”, J. Clim. 2014. 27, 3920–3937. 2014. https://doi.org/10.1175/JCLI-D-13-0046 5.1.

[33] Chunn, D., Faramarzi, M., Smerdon, B., Alessi, D. S. “Application of an integrated SWAT –MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta”, Water. 11, 110. 2019. https://doi.org/10.3390/w11010 110.

Downloads

Published

2025-01-08

Issue

Section

Agricultural, Bioresources, Biomedical, Food, Environmental & Water Resources Engineering

How to Cite

SWAT HYDROLOGICAL MODEL OF ZAMFARA WATERSHED OF SOKOTO-RIMA RIVER CATCHMENT, NORTH WEST NIGERIA. (2025). Nigerian Journal of Technology, 43(4), 818 – 828. https://doi.org/10.4314/njt.v43i4.22