PREDICTING WHEAT YIELD IN AGRICULTURAL INDUSTRY USING DEEP LEARNING TECHNIQUES: A REVIEW

Authors

  • P. Bari Terna Engineering College, Nerul, Navi Mumbai, India
  • L. Ragha Fr. C. Rodrigues Institute of Techno-logy, Vashi, Navi Mumbai, India

DOI:

https://doi.org/10.4314/njt.v43i4.12

Keywords:

Deep learning, Wheat, Disease, Vegetation index, Performance metric

Abstract

In the post-pandemic future, technology in the agriculture industry can improve food sustainability while moderating the use of resources of nature in a variety of conditions. Robotic tools for agriculture have been developed for crop planting, nursing, clearing weeds, pest management, and harvesting. The key aspects of crop growth and innovative agricultural engineering help farmers maximize crop yield. In the present investigation, it has been found that deep learning (DL) algorithms are used to enhance the predictability of wheat crop yield. The assessment and forecasting of wheat crop yields can be done with precision and dependability using satellite imagery. The scientific investigations in this study to predict wheat crop yield considered distinct factors, including various vegetation indices with remotely sensed imaging, climate-related conditions, nutrients in the soil, wheat plant diseases, and water scheduling. This study expounds a variety of DL strategies for predicting wheat production and found that many publications make use of long short-term memory (LSTM), along with residual network (ResNet) and deep neural networks (DNN). The performance measures, commonly harnessed in publications, are highlighted in this study, including coefficient of determination (R2), root mean square error (RMSE) and accuracy. This systematic evaluation of the literature on the wheat crop will open possibilities for future research for scholars.

References

[1] Bari, P. and Ragha, L. “Machine learning-based extrapolation of crop cultivation cost”, Inteligencia Artificial, vol. 27, no. 74, pp. 80–101, 2024, doi: 10.4114/intartif.vol27iss74pp 80-101.

[2] Islam, M. M., Adil, M. A. A., Talukder, M. A., Ahamed, M. K. U., Uddin, M. A., Hasan, M. K., Sharmin, S., Rahman, M. M. and Debnath “DeepCrop: Deep learning-based crop disease prediction with web application”, Journal of Agriculture and Food Research, vol. 14, no. August, p. 100764, 2023, doi: 10.1016/j.jafr.2023.100764.

[3] Statista “Wheat - statistics and facts”, Statista, 2023. https://www.statista.com/topics/1668/ wheat/#topicOverview (accessed Nov. 12, 2023).

[4] Agriculture “Wheat”, Vikaspedia, 2020. https://vikaspedia.in/agriculture/crop-product ion/package-of-practices/cereals-and-millets/ wheat (accessed Nov. 12, 2023).

[5] Bali, N. and Singla, A. “Deep learning based wheat crop yield prediction model in Punjab region of north India”, Applied Artificial Intelligence, vol. 35, no. 15, pp. 1304–1328, 2021, doi: 10.1080/08839514.2021.1976091.

[6] Pant, J., Pant, R. P., Kumar Singh, M., Pratap Singh, D. and Pant, H. “Analysis of agricultural crop yield prediction using statistical techniques of machine learning”, Materials Today: Proceedings, vol. 46, pp. 10922–10926, 2021, doi: 10.1016/j.matpr.20 21.01.948.

[7] Ezeaku, C., Ani, A. O., Adama, J., Job, V., Sule, S., Onwualu, A., Nwankwojike, B., Otoijamun, I. and Ogbobe, P. “Willingness to adopt precision agriculture: An analysis of Gombe and Bauchi States of Nigeria”, Nigerian Journal of Technology, vol. 43, no. 1, pp. 198–206, 2024, doi: 10.4314/njt.v43i 1.21.

[8] Mcculloch, W. S. and Pitts, W. “A logical calculus of the ideas immanent in nervous activity”, Bulletin of Mothemntical Biophys-ics, vol. 5, pp. 115–133, 1943.

[9] Rosenblatt, F. “The perceptron: A probabilistic model for information storage and organization in the brain”, Psychological Review, vol. 65, no. 6, pp. 386–408, 1958, doi: 10.1037/h0042519.

[10] Kelley, H. J. “Gradient theory of optimal flight paths”, ARS Journal, vol. 30, no. 10, pp. 947–954, 1960, doi: 10.2514/8.5282.

[11] Dreyfus, S. “The numerical solution of variational problems”, Journal of Mathematical Analysis and Applications, vol. 5, no. 1, pp. 30–45, 1962, doi: 10.1016/0022-247X(62)90004-5.

[12] Fukushima, K. “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”, Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980, doi: 10.1007/BF00344251.

[13] Rumelhart, D. E., Hintont, G. E. and Williams, R. J. “Learning representations by back-propagating errors”, Nature, vol. 323, pp. 533–536, 1986, doi: https://doi.org/10.103 8/323533a0.

[14] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. and Jackel, L. D. “Backpropagation applied to handwritten zip code recognition neural computation”, Neural Computation, vol. 1, no. 4, pp. 541–551, 1989, doi: doi: 10.1162/neco.1989.1.4.541.

[15] Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., Zhu, M. and Wu, X. “Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China”, Ecological Indicators, vol. 101, pp. 943–953, 2019, doi: 10.1016/j.ecolind.2019.01.059.

[16] Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D. S. N., Pozza, L. E., Ugbaje, S. U., Jephcott, T. G., Paterson, S. E., Whelan, B. M. and Bishop, T. F. A. “An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning”, Precision Agriculture., vol. 20, no. 5, pp. 1015–1029, 2019, doi: 10.1007/s11119-018-09628-4.

[17] Klompenburg, T. van, Kassahun, A. and Catal, C. “Crop yield prediction using machine learning: A systematic literature review”, Computers and Electronics in Agriculture, vol. 177, 2020, doi: 10.1016/j.compag.2020.105709.

[18] Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N. H. and Islam, N. “A systematic literature review on crop yield prediction with deep learning and remote sensing”, Remote Sensing, vol. 14, no. 9, 2022, doi: 10.3390/rs14091990.

[19] Kitchenham, B., Charters, S., Budgen, D., Brereton, P., Turner, M., Linkman, S. and Visaggio, G. “Guidelines for performing systematic literature reviews in software engineering”, Technical Report, Ver. 2.3 EBSE Technical Report. EBSE. 2007, doi: Retrieved from https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf

[20] Bari, P. and Karande, P. “Cost factor focused scheduling and sequencing : A neoteric literature review”, Operational Research in Engineering Sciences: Theory and Applications, vol. 6, no. 2, 2023, pp. 336-366 2022, doi: https:// doi.org/10.31181/oresta281 2222016b.

[21] Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O. “Deep learning for computational biology”, Molecular Systems Biology, vol. 12, no. 7, 2016, doi: 10.15252/msb.20156651.

[22] Sandhu, K. S., Lozada, D. N., Zhang, Z., Pumphrey, M. O. and Carter, A. H. “Deep learning for predicting complex traits in spring wheat breeding program”, Frontiers in Plant Science, vol. 11, 2021, doi: 10.3389/fpls.2020.613325.

[23] LeCun, Y., Leon, B., Yoshua, B. and Patrick, H. “Gradient-based learning applied to docu-ment recognition”, Proceedings IEEE, vol. 86, no. 11, pp. 1299–1305, 1998, doi: 10.1109/5.726791.

[24] Karen, S. and Zisserman, A. “Very deep convolutional networks for large-scale image recognition”, International Conference on Learning Representations, vol. 75, no. 6, pp. 398–406, 2015.

[25] Bari P. and Ragha L., “Optimizing pesticide decisions with deep transfer learning by recognizing crop pest”, First IEEE International Conference On “New Frontiers in Communication, Automation, Management and Security (ICCAMS-2023)”, Presidency University, Bangalore, 2023.

[26] Szegedy, C., Wei, L., Yangqing, J., Pierre, S., Scott, R., Dragomir, A., Dumitru, E., Vincent, V. and Andrew, R. “Going deeper with convolutions Christian”, IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.72 98594.

[27] Manikandakumar, M. and Karthikeyan, P. “Weed classification using particle swarm optimization and deep learning models”, Computer Systems Science and Engineering., vol. 44, no. 1, pp. 913–927, 2022, doi: 10.32604/csse.2023.025434.

[28] He, K., Zhang, X., Ren, S. and Sun, J. “Deep residual learning for image recognition”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016, doi: 10.1109/CVPR.2016 .90.

[29] Ronneberger, O., Fischer, P. and Brox, T. “U-Net: Convolutional Networks for Biomedical Image Segmentation”, IEEE Access, vol. 9, pp. 16591–16603, 2021, doi: 10.1109/ACCE SS.2021.3053408.

[30] Liu, S., Peng, D., Zhang, B., Chen, Z., Yu, L., Chen, J., Pan, Y., Zheng, S., Hu, J., Lou, Z., Chen, Y. and Yang, S. “The accuracy of winter wheat identification at different growth stages using remote sensing”, Remote Sensing, vol. 14, no. 4, 2022, doi: 10.3390/rs 14040893.

[31] Graves, A. “Generating sequences with recu-rrent neural networks”, ArXiv Prepr, pp. 1–43, 2013, http://arxiv.org/abs/1308.0850.

[32] Wang, J., Si, H., Gao, Z. and Shi, L. “Winter wheat yield prediction using an LSTM model from MODIS LAI products”, Agriculture, vol. 12, no. 10, 2022, doi: 10.3390/agricultu re12101707.

[33] Huete, A. R., Liu, H. Q., Batchily, K. and Leeuwen, W. Van. “A comparison of vegetat-ion indices over a global set of TM images for EOS-MODIS”, Remote Sensing of Environm-ent., vol. 59, no. 1, pp. 440-451., 1997.

[34] Jamali, M., Soufizadeh, S., Yeganeh, B. and Emam, Y. “Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery”, Ecological Informatics, vol. 74, 2023, doi: 10.1016/j.ecoinf.2022.101967.

[35] Beisekenov, N. A., Sadenova, M. A. and Varbanov, P. S. “Mathematical optimization as a tool for the development of ‘Smart’ agriculture in Kazakhstan”, Chemical Engineering Transactions, vol. 88, pp. 1219–1224, 2021, doi: 10.3303/CET2188203.

[36] Xie, Y. and Huang, J. “Integration of a crop growth model and deep learning methods to improve satellite-based yield estimation of winter wheat in henan province, China”, Remote Sensing, vol. 13, no. 21, 2021, doi: 10.3390/rs13214372.

[37] Evans, F. H. and Shen, J. “Long-term hindcasts of wheat yield in fields using remotely sensed phenology, climate data and machine learning”, Remote Sensing, vol. 13, no. 13, 2021, doi: 10.3390/rs13132435.

[38] Wang, X., Huang, J., Feng, Q. and Yin, D. “Winter wheat yield prediction at county level and uncertainty analysis in main wheat-producing regions of China with deep learning approaches”, Remote Sensing, vol. 12, no. 11, 2020, doi: 10.3390/rs12111744.

[39] Wolanin, A., Mateo-Garciá, G., Camps-Valls, G., Gómez-Chova, L., Meroni, M., Duveiller, G., Liangzhi, Y. and Guanter, L. “Estimating and understanding crop yields with explainable deep learning in the Indian wheat belt”, Environmental Research Letters, vol. 15, no. 2, 2020, doi: 10.1088/1748-9326/ab68ac.

[40] Sun, Z., Di, L., Fang, H. and Burgess, A. “Deep learning classification for crop types in North Dakota”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 2200–2213, 2020, doi: 10.1109/JSTARS.2020.2990104.

[41] Moghimi, A., Yang, C. and Anderson, J. A. “Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat”, Computers and Electronics in Agriculture, vol. 172, 2020, doi: 10.1016/j.compag.2020.105299.

[42] Nevavuori, P., Narra, N. and Lipping, T. “Crop yield prediction with deep convolutional neural networks”, Computers and Electronics in Agriculture, vol. 163, 2019, doi: 10.1016/j.compag.2019.104859.

[43] Wang, Y., Zhang, Z., Feng, L., Du, Q. and Runge, T. “Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States”, Remote Sensing, vol. 12, no. 8, 2020, doi: 10.3390/RS12081232.

[44] Tanabe, R., Matsui, T. and Tanaka, T. S. T. “Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery”, Field Crops Research, vol. 291, 2023, doi: 10.1016/j.fcr. 2022.108786.

[45] Tesfaye, A. A., Awoke, B. G., Sida, T. S. and Osgood, D. E. “Enhancing smallholder wheat yield prediction through sensor fusion and phenology with Machine Learning and Deep Learning methods”, Agriculture, vol. 12, no. 9, 2022, doi: 10.3390/agriculture12091352.

[46] Han, D., Wang, P., Tansey, K., Liu, J., Zhang, Y., Tian, H. and Zhang, S. “Integrating an attention-based deep learning framework and the SAFY-V model for winter wheat yield estimation using time series SAR and optical data”, Computers and Electronics in Agriculture, vol. 201, no. 17, p. 107334, 2022, doi: 10.1016/j.compag.2022.107334.

[47] Zhang, J., Tian, H., Wang, P., Tansey, K., Zhang, S. and Li, H. “Improving wheat yield estimates using data augmentation models and remotely sensed biophysical indices within deep neural networks in the Guanzhong Plain, PR China”, Computers and Electronics in Agriculture, vol. 192, no. 17, 2022, doi: 10.1016/j.compag.2021.106616.

[48] Tian, H., Wang, P., Tansey, K., Han, D., Zhang, J., Zhang, S. and Li, H. “A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China”, International Journal of Applied Earth Observation and Geoinforma-tion., vol. 102, no. 17, 2021, doi: 10.1016/j.ja g.2021.102375.

[49] Di, Y., Gao, M., Feng, F., Li, Q. and Zhang, H. “A new framework for winter wheat yield prediction integrating deep learning and bayesian optimization”, Agronomy, vol. 12, no. 12, pp. 1–15, 2022, doi: 10.3390/agrono my12123194.

[50] Xie, Y. “Combining CERES-Wheat model, Sentinel-2 data and deep learning method for winter wheat yield estimation”, International Journal of Remote Sensing, vol. 43, no. 2, pp. 630–648, 2022, doi: 10.1080/01431161.2022 .2026521.

[51] Wang, J., Wang, P., Tian, H., Tansey, K., Liu, J. and Quan, W. “A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables”, Computers and Electronics in Agriculture, vol. 206, no. 17, 2023, doi: 10.1016/j.compag.2023.107 705.

[52] Qiu, R., He, Y. and Zhang, M. “Automatic detection and counting of wheat spikelet using semi-automatic labeling and deep learning”, Frontiers in Plant Science, vol. 13, pp. 1–11, 2022, doi: 10.3389/fpls.2022.87255 5.

[53] Alkhudaydi, T. and De La lglesia, B. “Counting spikelets from infield wheat crop images using fully convolutional networks”, Neural Computing and Applications, vol. 34, no. 20, pp. 17539–17560, 2022, doi: 10.100 7/s00521-022-07392-1.

[54] Misra, T., Arora, A., Marwaha, S., Chinnusamy, V., Rao, A. R., Jain, R., Sahoo, R. N., Ray, M., Kumar, S., Raju, D., Jha, R. R., Nigam, A. and Goel, S. “SpikeSegNet - A deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging”, Plant Methods, vol. 16, no. 1, pp. 1–20, 2020, doi: 10.1186/s13007-020-00582-9.

[55] Sadeghi-Tehran, P., Virlet, N., Ampe, E. M., Reyns, P. and Hawkesford, M. J. “Deepcount: In-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks”, Frontiers in Plant Science, vol. 10, pp. 1–16, 2019, doi: 10.3389/fpls.2019.01176.

[56] Zaji, A., Liu, Z., Xiao, G., Bhowmik, P., Sangha, J. S. and Ruan, Y. “Wheat spike localization and counting via hybrid UNet architectures”, Computers and Electronics in Agriculture, vol. 203, 2022, doi: 10.1016/j. compag.2022.107439.

[57] Chen, J., Li, Q., Tan, Q., Gui, S., Wang, X., Yi, F., Jiang, D. and Zhou, J. “Combining lightweight wheat spikes detecting model and offline Android software development for in-field wheat yield prediction”, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, vol. 37, no. 19, pp. 156–164, 2021, doi: 10.11975/j.issn.1002-6819.2021.19.018.

[58] Hasan, M. M., Chopin, J. P., Laga, H. and Miklavcic, S. J. “Detection and analysis of wheat spikes using Convolutional Neural Networks”, Plant Methods, vol. 14, no. 1, pp. 1–13, 2018, doi: 10.1186/s13007-018-0366-8.

[59] Fei, S., Li, L., Han, Z., Chen, Z. and Xiao, Y. “Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield”, Plant Methods, vol. 18, no. 1, pp. 1–13, https://doi.org/10.1186/s13 007-022-00949-0.

[60] Chandel, N. S., Rajwade, Y. A., Dubey, K., Chandel, A. K., Subeesh, A. and Tiwari, M. K. “Water stress identification of winter wheat crop with, state-of-the-art AI techniques and high-resolution thermal-RGB imagery”, Plants, pp. 2–21, 2022, doi: https://doi.org/10.3390/ plants11233344.

[61] Adesanya, O. O. and Yinka-Banjo, C. O. “Classification of nitrogen deficiency for maize plants using deep learning algorithms on low-end android smartphones”, Nigerian Journal of Technology, vol. 41, no. 2, pp. 278–290, 2022, doi: 10.4314/njt.v41i2.10.

[62] Cao, J., Zhang, Z., Luo, Y., Zhang, L., Zhang, J., Li, Z. and Tao, F. “Wheat yield predictions at a county and field scale with deep learning, machine learningand google earth engine”, European Journal of Agronomy., vol. 123, 2021, doi: 10.1016/j.eja.2020.126204.

[63] Kaur, A., Goyal, P., Rajhans, R., Agarwal, L. and Goyal, N. “Fusion of multivariate time series meteorological and static soil data for multistage crop yield prediction using multi-head self attention network”, Expert Systems with Applications, vol. 226, 2023, doi: 10.1016/j.eswa.2023.120098.

[64] Paudel, D., de Wit, A., Boogaard, H., Marcos, D., Osinga, S. and Athanasiadis, I. N. “Interpretability of deep learning models for crop yield forecasting”, Computers and Electronics in Agriculture, vol. 206, 2023, doi: 10.1016/j.compag.2023.107663.

[65] Huang, H., Huang, J., Feng, Q., Liu, J., Li, X., Wang, X. and Niu, Q. “Developing a dual-stream deep-learning neural network model for improving county-level winter wheat yield estimates in China”, Remote Sensing, vol. 14, no. 20, 2022, doi: 10.3390/rs14205280.

[66] Tripathi, A., Tiwari, R. K. and Tiwari, S. P. “A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation”, International Journal of Applied Earth Observation and Geoinformation., vol. 113, 2022, doi: 10.1016/j.jag.2022.102959.

[67] Kumar, R. and Pandey, S. “An accurate prediction of crop yield using hybrid deep capsule auto encoder with softmax regression”, Multimedia Tools and Applications, vol. 82, no. 10, pp. 15371–15393, 2023, doi: 10.1007/s11042-022-13919-4.

[68] Daniel, J., Shyamala, R., Pugalenthi, R. and Mohan Kumar, P. “RANC-CROP recommen-dation attributed to soil nutrients and stock analysis using machine learning”, IETE Journal of Research, 2022, doi: 10.1080/0377 2063.2022.2060868.

[69] Fajardo, M. and Whelan, B. M. “Within‐farm wheat yield forecasting incorporating off‐farm information”, Precision Agriculture, vol. 22, no. 2, pp. 569–585, 2021, doi: 10.1007/s11119-020-09779-3.

[70] Sun, J., Lai, Z., Di, L., Sun, Z., Tao, J. and Shen, Y. “Multilevel deep learning network for county-level corn yield estimation in the U.S. corn belt”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5048–5060, 2020, doi: 10.1109/JSTARS.2020.3019046.

[71] Li, R., Wang, R., Xie, C., Chen, H., Long, Q., Liu, L., Zhang, J., Chen, T., Hu, H., Jiao, L., Du, J. and Liu, H. “A multi-branch convolutional neural network with density map for aphid counting”, Biosystems Engineering, vol. 213, pp. 148–161, 2022, doi: 10.1016/j.biosystemseng.2021.11.020.

[72] Nigam, S., Jain, R., Marwaha, S., Arora, A., Singh, V. K., Singh, A. K., Paul, R. K. and Kingsly, I. T. “Automating yellow rust disease identification in wheat using artificial intelligence”, Indian Journal of Agricultural Sciences, vol. 91, no. 9, pp. 1391–1395, 2021, doi: 10.56093/ijas.v91i9.116097.

[73] Jiang, J., Liu, H., Zhao, C., He, C., Ma, J., Cheng, T., Zhu, Y., Cao, W. and Yao, X. “Evaluation of diverse convolutional neural networks and training strategies for wheat leaf disease identification with field-acquired photographs”, Remote Sensing, vol. 14, no. 14, 2022, doi: 10.3390/rs14143446.

[74] Long, M., Hartley, M., Morris, R. J. and Brown, J. K. M. “Classification of wheat diseases using deep learning networks with field and glasshouse images”, Plant Pathology, vol. 72, no. 3, pp. 536–547, 2023, doi: 10.1111/ppa.13684.

[75] Jia, W., Wei, Z. and Zhang, L. “A novel prediction and planning model for the benefit of irrigation water allocation based on deep learning and uncertain programming”, Water, vol. 14, no. 5, 2022, doi: //doi.org/10.3390/w1 4050689.

[76] Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., Duan, F., Chen, R. and Ma, Y. “UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat”, Precision Agriculture, vol. 24, no. 1, pp. 187–212, 2023, doi: 10.1007/s11119-022-09938-8.

[77] Cui, Y. “Landscaping agricultural and animal husbandry production park using lightweight deep reinforcement learning under circular symbiosis concept”, Computational Intellige-nce and Neuroscience, vol. 2022, pp. 1–8, 2022, doi: 10.1155/2022/8410996.

[78] Pang, D., Wang, H., Chen, P. and Liang, D. “Spider mites detection in wheat field based on an improved RetinaNet”, Agriculture (Switzerland), vol. 12, no. 12, pp. 1–14, 2022, doi: 10.3390/agriculture12122160.

[79] Srivastava, A. K., Safaei, N., Khaki, S., Lopez, G., Zeng, W., Ewert, F., Gaiser, T. and Rahimi, J. “Winter wheat yield prediction using convolutional neural networks from environmental and phenological data”, Scientific Reports, vol. 12, no. 1, pp. 1–14, 2022, doi: 10.1038/s41598-022-06249-w.

[80] Yi, Z., Jia, L., Chen, Q., Jiang, M., Zhou, D. and Zeng, Y. “Early-season crop identification in the Shiyang river basin Using a deep learning algorithm and time-series Sentinel-2 data”, Remote Sensing, vol. 14, no. 21, 2022, doi: 10.3390/rs14215625.

[81] Sirsat, M. S., Oblessuc, P. R. and Ramiro, R. S. “Genomic prediction of wheat grain yield using machine learning”, Agriculture, vol. 12, no. 9, 2022, doi: 10.3390/agriculture120914 06.

[82] Jiang, S., Hao, J., Li, H., Zuo, C., Geng, X. and Sun, X. “Gradient theory of optimal flight paths”, Sensors, vol. 22, no. 18, pp. 1–20, 2022, doi: 10.3390/s22186967.

[83] Khaki, S., Safaei, N., Pham, H. and Wang, L. “WheatNet: A lightweight convolutional neural network for high-throughput image-based wheat head detection and counting”, Neurocomputing, vol. 489, pp. 78–89, 2022, doi: 10.1016/j.neucom.2022.03.017.

[84] Tereshchenko, S. N., Osipov, A. L. and Moiseeva, E. D. “Determining the number of wheatears on the images of wheat fields by the computer vision method”, Optoelectronics, Instrumentation and Data Processing, vol. 58, no. 3, pp. 266–272, 2022, doi: 10.3103/S8756699022030074.

[85] d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L. and van der Velde, M. “Monitoring crop phenology with street-level imagery using computer vision”, Computers and Electronics in Agriculture, vol. 196, 2022, doi: 10.1016/j.compag.2022.106866.

[86] Indira, D. N., Sobhana, M., Sumallika, T. and Sudha, M. V. “An artificial intelligence based weed classification using vgg16 classifier and rmsprop optimizer”, Journal of Theoretical and Applied Information Technology, vol. 100, no. 7, pp. 1806–1816, 2022.

[87] Egusquiza, I., Picon, A., Irusta, U., Bereciartua-Perez, A., Eggers, T., Klukas, C., Aramendi, E. and Navarra-Mestre, R. “Analysis of few-shot techniques for fungal plant disease classification and evaluation of clustering capabilities over real datasets”, Frontiers in Plant Science, vol. 13, pp. 1–17, 2022, doi: 10.3389/fpls.2022.813237.

[88] Zhang, X., Han, L., Sobeih, T., Lappin, L., Lee, M. A., Howard, A. and Kisdi, A. “The self-supervised spectral–spatial vision transformer network for accurate prediction of wheat nitrogen status from UAV imagery”, Remote Sensing, vol. 14, no. 6, 2022, doi: 10.3390/rs14061400.

[89] Qi, X., Wang, Y., Peng, J., Zhang, L., Yuan, W. and Qi, X. “The 10-meter winter wheat mapping in Shandong province using sentinel-2 data and coarse resolution maps”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 9760–9774, 2022, doi: 10.1109/JST ARS.2022.3220698.

[90] Chergui, N. “Durum wheat yield forecasting using machine learning”, Artificial Intelligen-ce in Agriculture, vol. 6, pp. 156–166, 2022, doi: 10.1016/j.aiia.2022.09.003.

[91] Shafi, U., Mumtaz, R., Haq, I. U., Hafeez, M., Iqbal, N., Shaukat, A., Zaidi, S. M. H. and Mahmood, Z. “Wheat yellow rust disease infection type classification using texture features”, Sensors, vol. 22, no. 1, pp. 1–21, 2022, doi: 10.3390/s22010146.

[92] Liu, Y., Wang, S., Wang, X., Chen, B., Chen, J., Wang, J., Huang, M., Wang, Z., Ma, L., Wang, P., Amir, M. and Zhu, K. “Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods”, Computers and Electronics in Agriculture, vol. 192, pp. 1–11, 2022, doi: 10.1016/j.compag.2021.106612.

[93] Maqsood, M. H., Mumtaz, R., Haq, I. U., Shafi, U., Zaidi, S. M. H. and Hafeez, M. “Super resolution generative adversarial network (Srgans) for wheat stripe rust classification”, Sensors, vol. 21, no. 23, pp. 1–12, 2021, doi: 10.3390/s21237903.

[94] Furbank, R. T., Silva-Perez, V., Evans, J. R., Condon, A. G., Estavillo, G. M., He, W., Newman, S., Poiré, R., Hall, A. and He, Z. “Wheat physiology predictor: Predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning”, Plant Methods, vol. 17, no. 1, pp. 1–15, 2021, doi: 10.1186/s13007-021-00806-6.

[95] Qiao, M., He, X., Cheng, X., Li, P., Luo, H., Zhang, L. and Tian, Z. “Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3D convolutional neural networks”, International Journal of Applied Earth Observation and Geoinformation., vol. 102, 2021, doi: 10.1016/j.jag.2021.102436.

[96] Genaev, M. A., Skolotneva, E. S., Gultyaeva, E. I., Orlova, E. A., Bechtold, N. P. and Afonnikov, D. A. “Image-based wheat fungi diseases identification by deep learning”, Plants, vol. 10, no. 8, 2021, doi: 10.3390/plants10081500.

[97] Arun, P. V. and Karnieli, A. “Deep learning-based phenological event modeling for classification of crops”, Remote Sensing, vol. 13, no. 13, pp. 1–23, 2021, doi: 10.3390/rs131 32477.

[98] Wang, Y., Qin, Y. and Cui, J. “Occlusion robust wheat ear counting algorithm based on deep learning”, Frontiers in Plant Science, vol. 12, no. June, pp. 1–14, 2021, doi: 10.3389/fpls.2021.645899.

[99] Chen, P., Li, W. L., Yao, S. J., Ma, C., Zhang, J., Wang, B., Zheng, C. H., Xie, C. J. and Liang, D. “Recognition and counting of wheat mites in wheat fields by a three-step deep learning method”, Neurocomputing, vol. 437, pp. 21–30, 2021, doi: 10.1016/j.neucom.2020 .07.140.

[100] Schirrmann, M., Landwehr, N., Giebel, A., Garz, A. and Dammer, K. H. “Early detection of stripe rust in winter wheat using deep residual neural networks”, Frontiers in Plant Science, vol. 12, no. March, pp. 1–14, 2021, doi: 10.3389/fpls.2021.469689.

[101] Rasti, S., Bleakley, C. J., Silvestre, G. C. M., Holden, N. M., Langton, D. and O’Hare, G. M. P. “Crop growth stage estimation prior to canopy closure using deep learning algorithms”, Neural Computing and Applic-ations, vol. 33, no. 5, pp. 1733–1743, 2021, doi: 10.1007/s00521-020-05064-6.

[102] Bukhari, H. R., Mumtaz, R., Inayat, S., Shafi, U., Haq, I. U., Zaidi, S. M. H. and Hafeez, M. “Assessing the impact of segmentation on wheat stripe rust disease classification using computer vision and deep learning”, IEEE Access, vol. 9, pp. 164986–165004, 2021, doi: 10.1109/ACCESS.2021.3134196.

[103] Goyal, L., Sharma, C. M., Singh, A. and Singh, P. K. “Leaf and spike wheat disease detection and classification using an improved deep convolutional architecture”, Informatics in Medicine Unlocked, vol. 25, 2021, doi: 10.1016/j.imu.2021.100642.

[104] Sapkota, B., Singh, V., Neely, C., Rajan, N. and Bagavathiannan, M. “Detection of Italian ryegrass in wheat and prediction of competitive interactions using remote-sensing and machine-learning techniques”, Remote Sensing, vol. 12, no. 18, 2020, doi: 10.3390/RS12182977.

[105] Minallah, N., Tariq, M., Aziz, N., Khan, W., ur Rehman, A. and Belhaouari, S. B. “On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network”, PLoS One, vol. 15, no. 9, pp. 1–16, 2020, doi: 10.1371/journal.pone.0239746.

[106] Xu, Xin, Li, H., Yin, F., Xi, L., Qiao, H., Ma, Z., Shen, S., Jiang, B. and Ma, X. “Wheat ear counting using K-means clustering segmentation and convolutional neural network”, Plant Methods, vol. 16, no. 106, pp. 1–13, 2020, doi: 10.1186/s13007-020-00648-8.

[107] Chandra, A. L., Desai, S. V., Balasubraman ian, V. N., Ninomiya, S. and Guo, W. “Active learning with point supervision for cost-effective panicle detection in cereal crops”, Plant Methods, vol. 16, no. 34, pp. 1–16, 2020, doi: 10.1186/s13007-020-00575-8.

[108] Azimi, N., Sofalian, O., Davari, M., Asghari, A. and Zare, N. “Statistical and machine learning-based FHB detection in durum wheat”, Plant Breeding and Biotechnology, vol. 8, no. 3, pp. 265–280, 2020, doi: 10.9787/PBB.2020.8.3.265.

[109] Qiu, R., Yang, C., Moghimi, A., Zhang, M., Steffenson, B. J. and Hirsch, C. D. “Detection of Fusarium Head Blight in wheat using a deep neural network and color imaging”, Remote Sensing, vol. 11, no. 22, 2019, doi: 10.3390/rs11222658.

[110] Sun, J., Di, L., Sun, Z., Shen, Y. and Lai, Z. “County-level soybean yield prediction using deep CNN-LSTM model”, Sensors (Switzerl-and), vol. 19, no. 20, pp. 1–21, 2019, doi: 10.3390/s19204363.

[111] Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., Han, L., González-Moreno, P., Ma, H., Ye, H. and Sobeih, T. “A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images”, Proceedings IEEE, vol. 11, 2019, doi: 10.3390/rs11131554.

[112] Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J. and Johannes, A. “Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild”, Computers and Electronics in Agriculture, vol. 161, pp. 280–290, 2019, doi: 10.1016/j.compag.2018.04.0 02.

[113] Escalante, H. J., Rodríguez-Sánchez, S., Jiménez-Lizárraga, M., Morales-Reyes, A., De La Calleja, J. and Vazquez, R. “Barley yield and fertilization analysis from UAV imagery: A deep learning approach”, International Journal of Remote Sensing, vol. 40, no. 7, pp. 2493–2516, 2019, doi: 10.1080/ 01431161.2019.1577571.

[114] Alkhudaydi, T., Reynolds, D., Griffiths, S., Zhou, J. and de la Iglesia, B. “An exploration of deep-learning based phenotypic analysis to detect spike regions in field conditions for UK bread wheat”, Plant Phenomics, vol. 2019, pp. 1–17, 2019, doi: 10.34133/2019/7368761.

[115] Sharma, L. K. and Singh, T. N. “Regression-based models for the prediction of unconfined compressive strength of artificially structured soil”, Engineering with Computers, vol. 34, no. 1, pp. 175–186, 2018, doi: 10.1007/ s00366-017-0528-8.

[116] Yang W., Nigon T., Hao Z., Dias Paiao G.,. Fernández G., Mulla D., Yang C., “Estima-tion of corn yield based on hyperspectral imagery and convolutional neural network”, Computers and Electronics in Agriculture., vol. 184, 2021, doi: 10.1016/j.compag.2021.1 06092.

Downloads

Published

2025-01-08

Issue

Section

Computer, Telecommunications, Software, Electrical & Electronics Engineering

How to Cite

PREDICTING WHEAT YIELD IN AGRICULTURAL INDUSTRY USING DEEP LEARNING TECHNIQUES: A REVIEW. (2025). Nigerian Journal of Technology, 43(4), 716 – 737. https://doi.org/10.4314/njt.v43i4.12