KINETIC AND THERMODYNAMIC STUDIES OF THE DEVOLATILIZATION OF PUMPKIN PODS (Telfairia occidentalis Hook F.) WASTES
DOI:
https://doi.org/10.4314/njt.v44i1.5Keywords:
Pumpkin pods, biofuel, Pyrolysis, energy generation, kinetic models, thermodynamic parametersAbstract
Waste accruing from Pumpkin pod (Telfairia occidentalis Hook F.) was exposed to pyrolysis at varying temperatures namely; 350oC, 400oC, 500oC and 600oC and the heating rates were monitored at 0.17, 0.33 and 0.5 oC/sec. The biochar were then characterized in terms of yield, proximate composition and the process kinetics evaluated using Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink models. The models also showed the behaviour of the biochar with respect to to change in temperature. Proximate analysis of the biochar shows that it contains 11.77% moisture, 2.64%ash 12.50% fixed carbon and 73.10% volatile matter with a heating value of 17.91 MJ/kg. Furthermore, at 10oC/min, 20oC/min and 30/min, the biochar yield (wt%) decreased from 63.1 to 42.13, 59.87 to 38.33 and 51.91 to 32.12 respectively as pyrolysis temperature increased from 350oC to 600oC. FWO, KAS and Starink models, show high R2 squared values greater than 0.9400, which indicate a good fit of the models. The mean activation energy (EA) obtained for FWO, KAS and Starink models were 157.68kJ/mol, 157.23kJ/mol and 157.38kJ/mol. The thermodynamics results for FWO, KAS and Starink models show an average enthalpy of 152.30kJ/mol, 157.44kJ/mol and 155.14KJ/mol, average free energy of 112.89kJ/mol, 122.77kJ/mol and 116.73kJ/mol and low average entropy of 0.077kJ/mol, 0.075kJ/mol and 0.073kJ/mol. The optimization of the thermal conversion of pumpkin pod for energy and sequestration purposes is provided by the theoretical analysis of this study.
References
[1] Demirbas, A. “The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis,” Fuel Processing Technology, vol. 88, no. 6, pp. 591–597, Jun. 2007, doi: 10.1016/j.fuproc.20 07.01.010.
[2] Ajieh, M. U., Isagba, E. S., Ihoeghian, N., Edosa, V. I. O., Amenaghawon, A., Oshoma, C. E., Erhunmwunse, N., Obuekwe, I. S., Tongo, I., Emokaro, C., and Ezemonye, L. I. N. “Assessment of sociocultural acceptability of biogas from faecal waste as an alternative energy source in selected areas of Benin City, Edo State, Nigeria”, Environment, Development and Sustainability, 2021. https://doi.org/10.1007/s10668-020-01205-y
[3] Dhyani, V., and Bhaskar, T. “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, Dec. 2018, doi: 10.1016/j.renene.2017.04. 035.
[4] García, R., Pizarro, C., Lavín, A. G., and Bueno, J. L. “Biomass proximate analysis using thermogravimetry,” Bioresour Technol, vol. 139, pp. 1–4, 2013, doi: 10.1016/j.biortech.201 3.03.197.
[5] Ajieh, M. U., Owamah, H. I., Edomwonyi-Otu, L. C., Ajieh, G. I., Aduba, P., Owebor, K., and Ikpeseni, S. C. “Characteristics of fuelwood perturbation and effects on carbon monoxide and particulate pollutants emission from cookstoves in Nigeria,” Energy for Sustainable Development, vol. 72, pp. 151–161, Feb. 2023, doi: 10.1016/j.esd.2022.12.008.
[6] Ren, G., Xu, X., Qu, J., Zhu, L., and Wang, T. “Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis,” World J Microbiol Biotechnol, vol. 32, no. 6, Jun. 2016, doi: 10.1007/s11274-016-2059-7.
[7] Feng, Q., and Lin, Y. “Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review,” Renewable and Sustainable Energy Reviews, vol. 77. Elsevier Ltd, pp. 1272–1287, 2017. doi: 10.1016/j.rser.2 017.03.022.
[8] Mohan, D., Pittman, C. U., and Steele, P. H. “Pyrolysis of wood/biomass for bio-oil: A critical review,” Energy and Fuels, vol. 20, no. 3. pp. 848–889, May 2006. doi: 10.1021/ef0502 397.
[9] Venderbosch, R. H., Ardiyanti, A. R., Wildschut, J., Oasmaa, A., and Heeres, H. J. “Stabilization of biomass-derived pyrolysis oils,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 5, pp. 674–686, 2010, doi: 10.1002/jctb.2354.
[10] Kocbach, A., Li, Y., Yttri, K. E., Cassee, F. R., Schwarze, P. E., and Namork, E. “Physicoche-mical characterisation of combustion particles from vehicle exhaust and residential wood smoke,” Part Fibre Toxicol, vol. 3, Jan. 2006, doi: 10.1186/1743-8977-3-1.
[11] Singh, H., and Jain, A. K. “Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review,” J Appl Polym Sci, vol. 111, no. 2, pp. 1115–1143, Jan. 2009, doi: 10.1002/app.29131.
[12] Arenas, C. N., Navarro, M. V., and Martínez, J. D. “Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model,” Bioresour Technol, vol. 288, Sep. 2019, doi: 10.1016/j.biortech.201 9.121485.
[13] Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N. and Zabava, B. S. “Influence of biomass moisture content on pellet properties - Review,” in Engineering for Rural Development, Latvia University of Agriculture, 2018, pp. 1876–1883. doi: 10.22616/ERDev2018.17.N449.
[14] Lozano-Martín, D., Vega-Maza, D., Moreau, A., Martín, M. C., Tuma, D., and Segovia, J. J. “Speed of sound data, derived perfect-gas heat capacities, and acoustic virial coefficients of a calibration standard natural gas mixture and a low-calorific H2-enriched mixture,” Journal of Chemical Thermodynamics, vol. 158, 2021, doi: 10.1016/j.jct.2021.106434.
[15] García-Maraver, A., Popov, V., and Zamorano, M. “A review of European standards for pellet quality,” Renew Energy, vol. 36, no. 12, pp. 3537–3540, Dec. 2011, doi: 10.1016/j.renene. 2011.05.013.
[16] Garg, R., Anand, N., and Kumar, D. “Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization,” Renew Energy, vol. 96, pp. 167–171, Oct. 2016, doi: 10.1016/j.renene.2016.04.059.
[17] Ihoeghian, N. A., Amenaghawon, A. N., Ogofure, A., Oshoma, C. E., Ajieh, M. U., Erhunmwunse, N. O., Obuekwe, I. S., Edosa, V. I. O., Tongo, I., Emokaro, C., Ezemonye, L. I. N., Semple, K. T., and Martin, A. D. “Biochar-facilitated batch co-digestion of food waste and cattle rumen content: An assessment of process stability, kinetic studies, and pathogen fate,” Green Technologies and Sustainability, vol. 1, no. 3, p. 100035, Sep. 2023, doi: 10.1016/j.gre ts.2023.100035.
[18] Isagba, E. S., Ajieh, M. U., Oshoma, C. E., Amenaghawon, A., Ogofure, A., Obatusin, V., Obuekwe, I. S., Tongo, I., Ihoeghian, N., Edosa, V. I. O., Erhunmwunse, N., Lag-Brotons, A. J., Emokaro, C., Ezemonye, L. I. N., and Semple, K. T. “Assessment of Anaerobic Digestate Amended with Wood Ash and Green Vegetable Matter and Impacts on Microbial Growth,” Waste Biomass Valorization, 2023, doi: 10.1007/s12649-023-02055-1.
[19] Liu, Z., and Han, G. “Production of solid fuel biochar from waste biomass by low temperature pyrolysis,” Fuel, vol. 158, pp. 159–165, May 2015, doi: 10.1016/j.fuel.2015.05.032.
[20] Azeem, M., Hale, L., Montgomery, J., Crowley, D., and McGiffen, M. E. “Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils,” PLoS One, vol. 15, no. 11 November, Nov. 2020, doi: 10.1371/journal.pone.0242209.
[21] Dhaundiyal, A., and Gangwar, J. “Kinetics of the thermal decomposition of pine needles,” Acta Universitatis Sapientiae, Agriculture and Environment, vol. 7, no. 1, pp. 5–22, Dec. 2015, doi: 10.1515/ausae-2015-0001.
[22] Mythili, R., Venkatachalam, P., Subramanian, P., and Uma, D. “Characterization of bioresidues for biooil production through pyrolysis,” Bioresour Technol, vol. 138, pp. 71–78, 2013, doi: 10.1016/j.biortech.2013.03.1 61.
[23] Kirch, T., Medwell, P. R., Birzer, C. H., and van Eyk, P. J. “Feedstock Dependence of Emissions from a Reverse-Downdraft Gasifier Cookst-ove,” Energy for Sustainable Development, vol. 56, pp. 42–50, Jun. 2020, doi: 10.1016/j.esd.20 20.02.008.
[24] Fahmi, R., Bridgwater, A. V., Donnison, I., Yates, N., and Jones, J. M. “The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability,” Fuel, vol. 87, no. 7, pp. 1230–1240, Jun. 2008, doi: 10.1016/j. fuel.2007.07.026.
[25] Das, S., Ghosh, S., Kuila, T., Murmu, N. C., and Kundu, A. “Biomass-Derived Advanced Carbon-Based Electrocatalysts for Oxygen Reduction Reaction,” Biomass, vol. 2, no. 3, pp. 155–177, Aug. 2022, doi: 10.3390/biomass203 0010.
[26] Bareschino, P., Marrasso, E., and Roselli, C. “Tobacco stalks as a sustainable energy source in civil sector: Assessment of techno-economic and environmental potential”, Renewable Energy, 175, 373–390; 2021. https://doi.org/10. 1016/j.r enene.2021.04.101
[27] Ajieh, M. U., Ogbomida, E. T., Uhunamure, N. D., Agbale, R. N., Ajieh, G. I., Ekperi, R., Owamah, H. I., and Okafor, I. F. “Analytical assessment of knowledge, attitude and practices (KAP) of waste management practices to optimize energy and food nexus: A case study of Oleh, Isoko South LGA, Delta State, Nigeria”, African Journal of Environmental Science and Technology, 18(8), 170–186; 2024. https://doi.org/10.5897/ajest2024.3275
[28] Arenas, C. N., Navarro, M. V., and Martínez, J. D. “Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model”, Bioresource Technology, 288, pp. 1-34; 2019. https://doi.org /10.1016/j.biortech.2019.121485
[29] Bianchi, O., Oliveira, R. V. B., Fiorio, R., Martins, J. D. N., Zattera, A. J., and Canto, L. B. “Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements”, Polymer Testing, 27(6), 722–729; 2008. https://doi.org/10.1016/j.polymerte sting.2008.05.003
[30] Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., and Hii, K. L. “Kinetic Analysis of Rice Husk Pyrolysis Using Kissinger-Akahira-Sunose (KAS) Method”, Procedia Engineering, 148, 1247–1251; 2016. https://doi.org/10.1016/j.pro eng.2016.06.486
[31] Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., Ren, S., Kang, S., and Shui, H. “Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods”, Carbon Resources Conversion, 3, 173–181; 2020. https://doi.org/ 10.1016/j.crcon.2020.11.002
[32] Singh, S., Patil, T., Tekade, S. P., Gawande, M. B., and Sawarkar, A. N. “Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis”, Science of the Total Environment, 783, 2021. https://doi.org/10.10 16/j.scitotenv.2021.147004
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nigerian Journal of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.