ANALYTICAL MODELING FOR NANOSTRUCTURE QUANTUM WELLS WITH EQUISPACED ENERGY LEVELS IN SEMICONDUCTOR TERNARY ALLOYS (Ax B1-x C)
Keywords:
Semiconductor nanostructures, Ternary alloys, Quantum wells, Equispaced energy levels, Effective mass.Abstract
The purpose of this study is to formulate an Analytical model of equispaced energy levels quantum wells (QWs) in semiconductor ternary alloys (AxB1-xC). The procedure is by mapping the envelop function Schrodinger equation for realistic QW, with the local conduction band edge as the potential experienced by an electron in the QW into an effective mass Schrodinger equation with a linear harmonic oscillator potential by the method of coordinate transformation. The electron effective mass and potential are then obtained as the signature for the equispaced energy level for QWs in semiconductor ternary alloys.
Downloads
Published
Issue
Section
License
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.

