Enhancement of Mobile Scissor Lifting System for Windy Environments
Keywords:
mobile Scissors lift, enhanced model, telecommunication applications, outstation broadcasting, windy environment, stabilityAbstract
This paper focuses on the enhancement of mobile scissor lifting system for windy environments. This study was necessitated in order to address the lack of support arm problem on the mobile scissor lifting system for the strong wind environment such as Minna in Niger State Nigeria. The outstation broadcasting operations in Minna metropolis are usually challenging during windy days as wind often affects the stability and efficiency of the outstation broadcasting platforms. This research employs electronic control circuit to control mechanical hydraulic actuated scissor lifting system in response to variations in wind speed. The mechanical components were designed using solidworks software. The control unit was remodeled using Proteus 8.0 software with the code written in Arduino integrated development environment (IDE). The model simulation results for both electronic and mechanical system reveal the possibility of achieving system stability with the resultant signal fidelity in outstation telecommunication broadcast within windy areas. The experiment result shows that the system was capable of lifting the telecommunication platform 2 meters high within 20 seconds considering the load range of 500 to 1000 kg. An overload alert mechanism was incorporated to signal the operators of excessive loading. Then, the system automatically deploys its support arms to counter the attendant consequences of the strong wind thereby restoring the stability of the mobile scissor lift. Therefore, the authors conclude that the enhanced mobile scissor lifting system would be deployed in the windy environment for the maximum attainment of stability objectives while physical model from this design should be subsequently fabricated in the near future.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Nigerian Journal of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.

