EVALUATION OF A MULTI-VARIABLE SELF-LEARNING FUZZY LOGIC CONTROLLER
DOI:
https://doi.org/10.4314/njt.221.463Abstract
In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of acceptable rules for multivariable fuzzy logic controllers is derived by extending an algorithm that enables a single-input-single-output fuzzy logic controller to self-learn its rule-base. The performance of the proposed self-learning procedure is investigated and evaluated by means of simulation studies of a hypothetical plant. The results obtained indicate that the approach could be effective in the control of nonlinear multivariable industrial processes.
Downloads
Issue
Section
License
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.